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Introduction Model & Analysis Results Discussion

French context

• Pesticide use impacts public health and biodiversity

• Target: halve pesticide use by 2025

• Constraints:

• Plant breeding for new disease resistance genes
• Breakdown and durability of resistance

Wanted
New agro-ecological methods

• Host mixtures remain to be optimized

• Plant immunity is key but absent from mathematical models so far

2 / 17



Introduction Model & Analysis Results Discussion

French context

• Pesticide use impacts public health and biodiversity

• Target: halve pesticide use by 2025

• Constraints:

• Plant breeding for new disease resistance genes
• Breakdown and durability of resistance

Wanted
New agro-ecological methods

• Host mixtures remain to be optimized

• Plant immunity is key but absent from mathematical models so far

2 / 17



Introduction Model & Analysis Results Discussion

French context

• Pesticide use impacts public health and biodiversity

• Target: halve pesticide use by 2025

• Constraints:

• Plant breeding for new disease resistance genes
• Breakdown and durability of resistance

Wanted
New agro-ecological methods

• Host mixtures remain to be optimized

• Plant immunity is key but absent from mathematical models so far

2 / 17



Introduction Model & Analysis Results Discussion

The Yunnan province experimentation (2000)

In mixtures, the prevalence of Rice blast was reduced from 20% to 1% on
susceptible varieties compared to susceptible monocultures (dilution
effect)

On resistant varieties compared to resistant monocultures, the prevalence
decreased from 2% to 1%. Why is that?
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Plant immune system
2 levels of immunity (Jones and Dangl, 2006; Milgroom, 2015)
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Effector Triggered Immunity (ETI)

Infection by an avirulent pathogen on a resistant plant:
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Introduction Model & Analysis Results Discussion

Effector Triggered Immunity (ETI)

Infection by an avirulent pathogen on a resistant plant:

Hypersensitive response
Programmed death of cells located where the infection occurred
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Introduction Model & Analysis Results Discussion

HR induces systemic acquired resistance

Infection by an avirulent pathogen on a resistant plant:

Systemic acquired resistance SAR
Resistance response that applies to the entire plant

Derives from ETI

PRIMING
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Introduction Model & Analysis Results Discussion

SAR and priming in host mixtures

Infection probability

Pathogen
Host

Susceptible Resistant

Primed resistant

Wild-type 1 0

0

Resistance-breaking 1 1

1-ρ

→ What is the impact of the priming on
epidemiological dynamics?
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Introduction Model & Analysis Results Discussion

Epidemic model: 3 important parameters

Proportion of resistant hosts p

Resistance-breaking cost c

Decreases the fitness of the resistance-breaking variant on both
susceptible and resistant plants

Xanthamonas axonopodis, bacteria (Wichmann and Bergelson, 2004 - Genetics)
Meloidogyne incognita, nematode (Castagnone-Serenoet al, 2007 - Evo. Eco.)

Potato virus Y (Janzac et al, 2010 - MPMI)
Phytophtora infestans, oomycete (Montarry et al, 2010 - Evolutionary Biology)

Soybean mosaic virus (Khatabi et al, 2013 - MPP)
Leptosphaeria maculans, fungi (Bousset et al, 2018 - Evolutionnary applications)

Priming efficiency ρ

Reduces the infection success of the resistance-breaking variant on
resistant plants

Tobacco mosaic virus (Ross, 1961 - Virology)
Full priming efficiency (Kuc, 1982 - BioSciences)

A. thaliana (Maleck et al., 2000 - Nature genetics)
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Epidemic model with wild and resistance-breaking variants

Ss

Is Js

Ss = Ns − Is − Js and Sr = Nr − S∗
r − Jr, where N = constant

β = pathogen transmission rate and α =harvest and replanting rate

İs = βIsSs − αIs

Ṡ∗
r = βIsSr

−(1− ρ)(1− c)β(Js + Jr)S
∗
r

− (γ + α)S∗
r

J̇s = (1− c)β(Js

+Jr

)Ss − αJs

J̇r = (1− c)β(Js + Jr)Sr+(1− ρ)(1− c)β(Js + Jr)S
∗
r − αJr .
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Epidemic model with wild and resistance-breaking variants

Ss

Sr

Sr
*
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Introduction Model & Analysis Results Discussion

Model

Let be x =
Is
N

, m =
S∗
r

N
, y =

Js
N

, z =
Jr
N

, and t∗ = αt with

N the number of plants

After nondimensionalization :



ẋ = Rx[(1− p)− x− y]− x ,

ṁ = Rx(p−m− z)− (1− ρ)(1− c)R(y + z)m− νm

ẏ = (1− c)R(y + z)[(1− p)− x− y]− y ,

ż = (1− c)R(y + z)(p−m− z) + (1− ρ)(1− c)R(y + z)m− z .

where

R =
βN

α
the basic reproduction rate and

ν =
γ + α

α
≥ 1 where γ ≥ 0 corresponds to the loss of priming,

and α ≥ 0, the harvest and replanting rate.

10 / 17



Introduction Model & Analysis Results Discussion

Model

Let be x =
Is
N

, m =
S∗
r

N
, y =

Js
N

, z =
Jr
N

, and t∗ = αt with

N the number of plants

After nondimensionalization :
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ż = (1− c)R(y + z)(p−m− z) + (1− ρ)(1− c)R(y + z)m− z .

where

R =
βN

α
the basic reproduction rate and

ν =
γ + α

α
≥ 1 where γ ≥ 0 corresponds to the loss of priming,

and α ≥ 0, the harvest and replanting rate.

10 / 17



Introduction Model & Analysis Results Discussion

Model

Let be x =
Is
N

, m =
S∗
r

N
, y =

Js
N

, z =
Jr
N

, and t∗ = αt with

N the number of plants

After nondimensionalization :
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Introduction Model & Analysis Results Discussion

Equilibria of the model

• (0, 0, 0, 0) : Disease-free equilibrium

Always exists

• (x̂, m̂, 0, 0) : Wild-type fixed equilibrium

Exists if Rw = R(1− p) > 1

• (0, 0, ŷ, ẑ) : Resistance-breaking fixed equilibrium

Exists if Rb = R(1− c) > 1

• (x̄, m̄, ȳ, z̄) : Coexistence equilibrium

Exists if

{
c > p , Rw > 1 , and ρ <

[pRv − c][Rw + ν − 1]

[Rb − 1]Rvp

}
→ Rv > 1 .

Equilibria stability ?
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Cooperative systems
Hal Smith, 2008 ; Hirsch, 1989

Conditions

• Positive interactions between variables,

• Irreducible jacobian matrix.

Jacobian matrix

J =

∗ 0 − 0
+ ∗ 0 −
− 0 ∗ +
0 − + ∗


_
__

Is

Sr
*

Js

Jr

Only positive loops
=⇒

The system converges towards an equilibrium which can only be
the coexistence equilibrium!
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Epidemiological dynamics stabilize genetic polymorphism

Two conditions:

c > p and ρ < (R(1−p)+ν−1)(R(1−c)p−c)
Rp(1−c)(R(1−p)−1) = [pRv−c][Ra+ν−1]

[Ra−1]Rvp

For given R = 5, ν = 1, and ρ = 0.8:
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Priming increases the effectiveness of host mixtures

Prevalence of the disease, P = Is + Js + Jr, when ρ (Priming effectiveness)

increases:
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Existence of an Optimal
proportion of resistant hosts p?

14 / 17



Introduction Model & Analysis Results Discussion

Priming increases the effectiveness of host mixtures

Prevalence of the disease, P = Is + Js + Jr, when ρ (Priming effectiveness)

increases:

0 0.2 0.4 0.6 0.8 1

proportion of resistant hosts

0

0.2

0.4

0.6

0.8

1

P
re

va
le

nc
e 

of
 in

fe
ct

io
us

ρ = 0 for black line

ρ = 0.2 for blue line

ρ = 0.5 for red line

ρ = 0.8 for yellow line

Existence of an Optimal
proportion of resistant hosts p?

14 / 17



Introduction Model & Analysis Results Discussion

Priming increases the effectiveness of host mixtures

Prevalence of the disease, P = Is + Js + Jr, when ρ (Priming effectiveness)

increases:

0 0.2 0.4 0.6 0.8 1

proportion of resistant hosts

0

0.2

0.4

0.6

0.8

1

P
re

va
le

nc
e 

of
 in

fe
ct

io
us

ρ = 0 for black line

ρ = 0.2 for blue line

ρ = 0.5 for red line

ρ = 0.8 for yellow line

Existence of an Optimal
proportion of resistant hosts p?

14 / 17



Introduction Model & Analysis Results Discussion

Priming increases the effectiveness of host mixtures

Prevalence of the disease, P = Is + Js + Jr, when ρ (Priming effectiveness)

increases:

0 0.2 0.4 0.6 0.8 1

proportion of resistant hosts

0

0.2

0.4

0.6

0.8

1

P
re

va
le

nc
e 

of
 in

fe
ct

io
us

ρ = 0 for black line

ρ = 0.2 for blue line

ρ = 0.5 for red line

ρ = 0.8 for yellow line

Existence of an Optimal
proportion of resistant hosts p?

14 / 17



Introduction Model & Analysis Results Discussion

Take-Home Messages
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• Host mixtures can be beneficial

• Priming is key to host mixtures efficiency

• Optimal proportion p? of resistant hosts to minimize virus prevalence

• Priming induced direct Cross-protection between hosts
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Discussion

• Evidence of the interest of priming in host mixtures shown annalytically
for the first time on an epidemiological model.

• Good agreement with experimental studies, which indicate that:

- Priming may account for 20% to 40% of the disease reduction in
mixtures

(Lannou & Pope 1997, Calonnec et al 1996)

• The use of an optimal proportion of resistants, p?, prevents the emergence
of virulent pathogens.

In addition to reducing the prevalence of the disease :

Host mixtures and priming increase durability of
resistances.

16 / 17



Introduction Model & Analysis Results Discussion

Discussion

• Evidence of the interest of priming in host mixtures shown annalytically
for the first time on an epidemiological model.

• Good agreement with experimental studies, which indicate that:

- Priming may account for 20% to 40% of the disease reduction in
mixtures

(Lannou & Pope 1997, Calonnec et al 1996)

• The use of an optimal proportion of resistants, p?, prevents the emergence
of virulent pathogens.

In addition to reducing the prevalence of the disease :

Host mixtures and priming increase durability of
resistances.

16 / 17



Introduction Model & Analysis Results Discussion

Thanks for listening!
Questions ?
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Behavioural epidemiology

Behavioural epidemiology:
Influence of new control method → Optimal proportion of resistant in a
mixture, p?.

How do farmers’ strategic choices influence disease dynamics?

• p as a dynamic variable.

• Conformism vs Stubbornness vs Responsiveness behavior, Mcquaid
et al, 2017.

Behavioural model
Epidemiological model

}
linked by a decision variable, p .
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Transient phase

Prevalence is minimized at equilibrium, i.e. after a long periode of time.
What happens in the transient phase, before the equilibrium?
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