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French context

e Pesticide use impacts public health and biodiversity
e Target: halve pesticide use by 2025
e Constraints:

e Plant breeding for new disease resistance genes
e Breakdown and durability of resistance
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e Target: halve pesticide use by 2025
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e Plant breeding for new disease resistance genes
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New agro-ecological methods
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French context

Pesticide use impacts public health and biodiversity

Target: halve pesticide use by 2025
e Constraints:

e Plant breeding for new disease resistance genes
e Breakdown and durability of resistance

Wanted

New agro-ecological methods

Host mixtures remain to be optimized

Plant immunity is key but absent from mathematical models so far
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The Yunnan province experimentation (2000)

In mixtures, the prevalence of Rice blast was reduced from 20% to 1% on
susceptible varieties compared to susceptible monocultures (dilution
effect)
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On resistant varieties compared to resistant monocultures, the prevalence
decreased from 2% to 1%. Why is that?
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Plant immune system
2 levels of immunity (Jones and Dangl, 2006; Milgroom, 2015)
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Effector Triggered Immunity (ETI)

Infection by an avirulent pathogen on a resistant plant:

Hypersensitive response
Programmed death of cells located where the infection occurred
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HR induces systemic acquired resistance

Infection by an avirulent pathogen on a resistant plant:

Resistance response that applies to the entire plant

Systemic acquired resistance SAR
Derives from ETI J

PRIMING
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Infection probability J
Host . .
Pathogen Susceptible  Resistant
Wild-type 1 0
Resistance-breaking 1 1

— What is the impact of the priming on
epidemiological dynamics?
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Infection probability J
Host Susceptible  Resistant  Primed resistant
Pathogen
Wild-type 1 Priming 0
Resistance-breaking 1 1 1-p

— What is the impact of the priming on
epidemiological dynamics?
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Epidemic model: 3 important parameters

Proportion of resistant hosts p J

Resistance-breaking cost ¢

Decreases the fitness of the resistance-breaking variant on both
susceptible and resistant plants

Xanthamonas axonopodis, bacteria (Wichmann and Bergelson, 2004 - Genetics)
Meloidogyne incognita, nematode (Castagnone-Serenoet al, 2007 - Evo. Eco.)
Potato virus Y (Janzac et al, 2010 - MPMI)
Phytophtora infestans, oomycete (Montarry et al, 2010 - Evolutionary Biology)
Soybean mosaic virus (Khatabi et al, 2013 - MPP)
Leptosphaeria maculans, fungi (Bousset et al, 2018 - Evolutionnary applications)

Priming efficiency p
Reduces the infection success of the resistance-breaking variant on
resistant plants

Tobacco mosaic virus (Ross, 1961 - Virology)
Full priming efficiency (Kuc, 1982 - BioSciences)
A. thaliana (Maleck et al., 2000 - Nature genetics)
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Discussion
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Epidemic model with wild and resistance-breaking variants

B

Ss=Ns—Is—Js and S,. = N, — S} — J., where N = constant
B = pathogen transmission rate and o =harvest and replanting rate

I, = PBILSs —al,

J, = (1—1¢)B(Js )Ss — ads
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Epidemic model with wild and resistance-breaking variants

)

Ss=Ns—Is—Js and S,. = N, — S} — J., where N = constant
B = pathogen transmission rate and o =harvest and replanting rate J

I, = BIS:—al,
Jo = (1=0)BJs+J)Ss — ads
Jo o= (1-0BJs+J)S, —al.
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Epidemic model with wild and resistance-breaking variants

prlmlr{g ------- /.

I, = PBILSs—al

S; = BLS—(1=p)(1=)B(Js + Jr)S; — (v + )S;

Jo = (1-0)BJs+J)Ss — ads

Jo o= (1 =0)BWJs +J)Se+(1 = p)(1 —)B(Js + J.)S; — ad.
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Model
I Sy s _ . .
Letbex—N,m—W,y—N,z—ﬁ,andt—atW|th

N the number of plants

After nondimensionalization :

& = Rz[l-p)-—z—-y]-=,

m Rx(p—m—2)— (1 —p)(1 —c)R(y+ z)m —vm
y = (1-9Ry+2)[(-p -z-yl-y,

5= (1—QR+2)p—m—2)+1-p)(l-R(y+2)m —=.
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Model
I Sy s _ . .
Letbex—N,m—W,y—N,z—ﬁ,andt—atW|th

N the number of plants

After nondimensionalization :

& = Rz[l-p)-—z—-y]-=,
m = Ra(p—m—2z)—(1—p)(1—c)R(y+ 2)m—vm
y = (Q=oRy+2z)[1-p)—z—yl—y,
i = (I—-eRy+2)p—-m—2)+1—-p)(1—c)R(y+2)m—z.
where
2 =Y the basic reproduction rate and

(0%
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Model
I Sy s _ . .
Letbex—N,m—W,y—N,Z—N,andt—atW|th

N the number of plants

After nondimensionalization :

& = Rz[l-p)-—z—-y]-=,
m = Rx(p—m-—2)—(1—p)(1—=c)R(y+ z)m —vm
y = (Q=oRy+2z)[1-p)—z—yl—y,
i o= A-oRy+2)p-—m=-2)+1-p)1-c)R(y+z)m—z.
where N
R= 6— the basic reproduction rate and
(0%
Y ta .
V= " >1 where v > 0 corresponds to the loss of priming,

and « > 0, the harvest and replanting rate.
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Exists if R, = R(1 —p) > 1

e (0,0,9,2) : Resistance-breaking fixed equilibrium
Exists if R, = R(1—c¢) > 1

e (Z,m,7,z) : Coexistence equilibrium
Exists if

[pR, — ][Ry + v — 1]
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Equilibria of the model

e (0,0,0,0) : Disease-free equilibrium
Always exists

o (&,7,0,0) : Wild-type fixed equilibrium
Exists if R, = R(1 —p) > 1

e (0,0,9,2) : Resistance-breaking fixed equilibrium
Exists if R, = R(1—c¢) > 1

e (Z,m,7,z) : Coexistence equilibrium
Exists if

[pR, — ][Ry + v — 1]
[}fb — 1]f%U})

{c>p,Rw>1,andp< }—>Rv>1.

Equilibria stability ?

Discussion
00000
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e Positive interactions between variables,

e Irreducible jacobian matrix.
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Cooperative systems
Hal Smith, 2008 ; Hirsch, 1989

Conditions
e Positive interactions between variables,

e Irreducible jacobian matrix.

Discussion
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Cooperative systems
Hal Smith, 2008 ; Hirsch, 1989

Conditions

e Positive interactions between variables,

e Irreducible jacobian matrix.

Jacobian matrix

o | + ¥

| © % ©

+ % o |

P
.

A

v

* < S
—>-

Only positive loops
=

* + | ©
<-——————

The system converges towards an equilibrium which can only be

the coexistence equilibrium!
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¢ > p and

< (R(1—p)+v—1)(R(1—c)p—c) _ [pRy—c][Ra+v—1]

P Rp(1-0)(R(1-p)—1) [Ra—1Rup

For given R =5,

Resistance breaking cost

v=1,and p=0.8:
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

0 01 02 03 04 05 06 07 08 09 1
Proportion of resistant hosts
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Priming increases the effectiveness of host mixtures

Prevalence of the disease, P = I, + Js + J», when p (Priming effectiveness)

increases: ]
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p* Proportion of resistant hosts

e Host mixtures can be beneficial
e Priming is key to host mixtures efficiency

e Optimal proportion p* of resistant hosts to minimize virus prevalence
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Take-Home Messages

1

0.9

0.8

0.7

0.6

05

0.4]

03

Prevalence of infectious

0.2

0 0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1

p* Proportion of resistant hosts

e Host mixtures can be beneficial

Priming is key to host mixtures efficiency

Optimal proportion p* of resistant hosts to minimize virus prevalence

Priming induced direct Cross-protection between hosts
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Discussion

e Evidence of the interest of priming in host mixtures shown annalytically
for the first time on an epidemiological model.

e Good agreement with experimental studies, which indicate that:

- Priming may account for 20% to 40% of the disease reduction in
mixtures
(Lannou & Pope 1997, Calonnec et al 1996)

e The use of an optimal proportion of resistants, p*, prevents the emergence
of virulent pathogens.
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Discussion

e Evidence of the interest of priming in host mixtures shown annalytically
for the first time on an epidemiological model.

e Good agreement with experimental studies, which indicate that:

- Priming may account for 20% to 40% of the disease reduction in
mixtures
(Lannou & Pope 1997, Calonnec et al 1996)

e The use of an optimal proportion of resistants, p*, prevents the emergence
of virulent pathogens.

In addition to reducing the prevalence of the disease :

Host mixtures and priming increase durability of
resistances.
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Behavioural epidemiology

Behavioural epidemiology:
Influence of new control method — Optimal proportion of resistant in a
mixture, p*.
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Behavioural epidemiology:
Influence of new control method — Optimal proportion of resistant in a
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How do farmers' strategic choices influence disease dynamics?
e p as a dynamic variable.

e Conformism vs Stubbornness vs Responsiveness behavior, Mcquaid
et al, 2017.




Behavioural epidemiology

Behavioural epidemiology:
Influence of new control method — Optimal proportion of resistant in a
mixture, p*.
How do farmers' strategic choices influence disease dynamics?
e p as a dynamic variable.

e Conformism vs Stubbornness vs Responsiveness behavior, Mcquaid
et al, 2017.

Behavioural model

Epidemiological model } linked by a decision variable, p.



Transient phase

Prevalence is minimized at equilibrium, i.e. after a long periode of time.
What happens in the transient phase, before the equilibrium?
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