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CO-INFECTIONS AND INTERACTIONS
HPV AS AN EXAMPLE FOR SIMILAR PATHOGENS

Co-infection is the simultaneous
infection of one host by multiple
pathogen species or strains or clones
or types, from now on pathogens.

Human papillomavirus

I many HPV types

I high-risk (oncogenic) types

I co-infections are common

I within-host interactions
between types is debated

I vaccinating against one type
may impact other types

*oncogenic types
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CO-INFECTIONS AND INTERACTIONS
LYME DISEASE AS AN EXAMPLE FOR DISTINCT PATHOGENS

Ticks are “toxic soup” and coinfections are the rule, including
babesiosis, anaplasmosis, Rocky Mountain spotted fever, etc.

c�lymedisease.org
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CO-INFECTIONS AND INTERACTIONS
MALARIA AS AN EXAMPLE OF TESTING FOR INTERACTIONS

Forbes (1907) and Cohen (1973) introduced

S =
ratio of observed coinfections to
the number expected if pathogens
were statistically independent

If
S > 1 pathogens positively associated
S = 1 no significant association
S < 1 pathogens negatively associated

Statistical associations are taken as a
signal of biological interactions
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HOW DID I CAME TO THIS TOPIC
MAIZE LETHAL NECROSIS AS A MOTIVATING EXAMPLE

MLN is a disease caused by co-infections by two viruses

NIMBioS Working Group “Multiscale Vectored Plant Viruses” focused
on MLN
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CO-INFECTION MODEL TO INFORM CONTROL OF MLN
HILKER ET AL (2017) PHYTOPATHOLOGY

I Analyzed a (very) simple model
of MLN

I Assumed the two viruses do not
interact (within the season)

I Multiplicative prevalence in
field data support this (strong)
assumption

I Multiplicative prevalence means
statistical independence:

P(co-infection) ⇡ P(infected with SCMV)⇥ P(infected with MCMV)
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INTERACTION TESTS ARE BASED ON INDEPENDENCE

I Methods for cross-sectional data based on independence tests

I Simple example:
I observations (N = 1000)

Pathogen A
Infected Not infected Sum

Pathogen B Infected 25 175 200
Not infected 75 725 800
Sum 100 900 1000

I Expectation under independence hyp.
Pathogen A

Infected Not infected Sum
Pathogen B Infected 20 180 200

Not infected 80 720 800
Sum 100 900 1000

I Chi-square test:

�2(1) = 1.74 ) p > 0.05 ) no evidence from data the pathogens interact

I May be dressed up in more complex statistics: log-linear or other
regressions accounting for confounding factors (e.g. risk group)
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QUESTION

Is it right to assume that independence means
non-interaction?
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SIMPLEST 2 NON-INTERACTING PATHOGENS MODEL

I �1,�2: infection rates
I µ: natural death rate
I Ii : prevalence of

pathogen i = 1, 2

İi = �i Ii(1 � Ii)� µIi ,

I Fi = �i Ii = �i(Ji + J1,2)

J̇1 = F1J; � (F2 + µ)J1 ,

J̇2 = F2J; � (F1 + µ)J2 ,

J̇1,2 = F2J1 + F1J2 � µJ1,2 .

I J; = 1 � J1 � J2 � J1,2
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PREVALENCES ARE NOT MUTIPLICATIVE

surprising?

For R0,i = �i/µ > 1, the equilibrium prevalence of co-infection is

J̄1,2 =

✓
�1 + �2

�1 + �2 � µ

◆
Ī1 Ī2 � Ī1 Ī2 .

Co-infections are more likely than expected by chance.
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PREVALENCES ARE POSITIVELY CORRELATED
Stochastic version: pathogen prevalences correlated

I1 and I2 go down simultaneously whenever co-infected dies.

cov
✓

I1
N
,

I2
N

◆
=

(�1 + �2)(�1 � µ)(�2 � µ)µ

N�1�2(�1 + �2 � µ)(�1 � µ+ �2 � µ)
� 0 .
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APPARENTLY NOT A WELL KNOWN RESULT

May & Nowak (1995)
Proc. Roy. Soc. B
Cited 351 times

Assumes prevalences
are multiplicative

Would have been useful
to reduce the complexity
of co-infection models

Unfortunately this
independence
assumption is not correct

Nowak & Sigmund (2002)
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KUCHARSKI AND GOG (2012)’S RESULT

I Model reduction in multi-strain influenza models
I Continuous age-structured model
I Prevalences are multiplicative within infinitesimal

age-classes only: 8a > 0,

j1,2(a) = i1(a)i2(a)

I We recover previous result with p(a) the age distribution:

J1,2 =

Z

R
j1,2(a)p(a)da =

Z

R
i1(a)i2(a)p(a)da

�
✓Z

R
i1(a)p(a)da

◆✓Z

R
i2(a)p(a)da

◆
= I1I2

if i1(a) and i2(a) are increasing with a (Harris inequality).
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KUCHARSKI AND GOG (2012)’S INTERPRETATION
Toxoplasma gondii AND Helicobacter pylori AS EXAMPLES

I One way of understanding the result is in terms of aging
I Individuals acquire more infections as they age
I As age increases, so does the probability of being infected
I Therefore, the prevalences of pathogens are correlated
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QUESTION

Mathematics say non-interacting pathogens are
not independent, but does that change anything
in practice?
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DATA-DRIVEN TESTS OF PATHOGEN INTERACTIONS
MALARIA AS AN EXAMPLE

Cross-sectional data on co-infection in one of two forms:

1. Full infection profiles

23 = 8 possible
combinations of 3

pathogens

2. Multiplicity of infection

distribution of the number of
pathogens hosted per host
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1. NON-INTERACTING DISTINCT PATHOGENS (NIDP)
I Analogous n

pathogen model
I Each pathogen

has a distinct

R0,i =
�i

µ

e.g. I1 = J1 + J1,2 + J1,3 + J1,2,3I Find equilibrium values
I Simple enough for recursive solution

J̄� =

P
i2�

�
R0,i � 1

�
J̄⌦i

1 +
P

i /2�
�
R0,i � 1

� .

I �: Some combination of pathogens
I ⌦i = � \ {i}: One fewer pathogen
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2. NON-INTERACTING SIMILAR PATHOGENS (NISP)

I Multiplicity of
Infection (MoI) data:
as many parameters in
NiDP as data points, so
NiDP is
overparameterized

I NiSP makes the strong
assumption that all
pathogens are
interchangeable:
R0,i = R0 (1 parameter,
more parsimonious).

Probability individual carries k distinct

infections given n pathogens in total

Leads to even simpler recursive solution:

M̄k =
(n � k + 1)(R0 � 1)
(n � k)(R0 � 1) + 1

M̄k�1 .
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USING THE MODELS IN PRACTICE ON REAL DATA

Form of model – NiDP or NiSP – driven by data (and whether
or not NiSP assumption of equal R0 acceptable)

Compare fit of model against bi/multi-nomial distributions
I i.e. compare against assuming statistical

independence
I fit models via maximum likelihood
I compare using AIC

Test whether NiSP or NiDP is sufficient to explain the data, i.e.
test whether data shows evidence of interaction

I Monte Carlo goodness of fit test
I Repeatedly simulate fitted model and check if likelihood of

the data is too far in the tail of distribution over all sims
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USING THE NISP MODEL TO UNDERSTAND MOI DATA
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USING THE NISP CT’D
NiSP outperforms binomial

I in all cases
I particularly in the tails

(co-infection much more
frequent than expected)

For HPV (Panel A)
I goodness of fit
I i.e. data set consistent

with idea types of HPV
do not interact

Lack of fit in other cases
meaning either:

I interaction
I epidemiological

differences between
pathogens (recall NiSP
assumes equal R0)

I confounding factor
(other than age)
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USING NIDP TO UNDERSTAND INFECTION PROFILES
MALARIA AS AN EXAMPLE

3 species: Plasmodium falciparum, P. malariae, P. ovale

R0,F = 2.47, R0,M = 1.15,
R0,O = 1.03, � AIC = 362.2,

p(GoF) = 0.40

No evidence from these data that the pathogens interact
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REVISITING THE ANALYSIS OF HOWARD ET AL (2001)
One century of data:

73 data sets on malaria (multiple species), covering
a period ranging from 1911 to 1999

Perry, R. (1911). Malaria in the jeypore Hill Tract and
adjoining coastland. Paludism, 5, 32.

Log-linear modelling to find interactions in malaria
co-infection data
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MY ROLE AS A FRENCH-SPEAKING CO-AUTHOR
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COMPARISON WITH HOWARD ET AL. (2001)
Results using NiDP differ in (12 + 4)/41 ⇡ 39% of cases

Testing for interaction differs from independence tests
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SUMMARY

Non-interacting pathogen are not statistically independent
I the prevalence of co-infection is always greater than the

product of the prevalences (positive correlation)
I statistically independent pathogens may well be interacting

(not presented)
I confirms that statistical independence is far from equivalent

to the absence of biological interaction between pathogens
Novel interaction tests based on simple epidemic models

I simple models challenge previous methods based on
statistical independence

I simple models (with no explicit age structure) intrinsically
correct for age as a confounding factor

I epidemic models make it unnecessary to keep track of age
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LIMITS AND PROSPECTS

Very simple two parameter SIS model (transmission, mortality)
I the positive correlation is due to host mortality (or ageing)
I results are valid for chronic (long-lasting) infections
I which represent a large fraction of co-infections

Clearance
I the model can accomodate specific pathogen clearance
I doubles the number of parameters, but may still be fitted
I qualitative results are unchanged in all cases tested

Virulence
I disease-induced mortality was assumed to be zero
I otherwise pathogens interact at the host population scale
I but virulence could be included in the model as well
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ECOLOGICAL PERSPECTIVES

Macro-parasites (e.g. worms)
I Macroparasite data show positive associations between

parasites known to interact negatively (Fenton et al 2014)
I SIS models are inedaquate for macro-parasites
I Our approach could be extended to macroparasites

Meta-communities
I Pathogens are species which form meta-populations

occupying discrete patches (hosts)
I In meta-community ecology, interactions between species

are often inferred from co-occurrence data
I Most methods are based on statistical associations
I Our approach could be extended to metacommunities
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TAKE-HOME MESSAGE

To detect interactions, methods based on

statistical independence
and

random distributions

should be replaced with methods based on

model-based distributions
assuming

no biological interactions

as a null expectation.
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THANKS FOR LISTENING!

I The NIMBioS Working Group, particularly
I Nik Cunniffe (Cambridge)
I Linda Allen (Texas Tech)

I Hamelin, F. M., Allen, L. J., Bokil, V. A., Gross, L. J., Hilker,
F. M., Jeger, M. J., ... & Cunniffe, N. J. (2019). Coinfections
by noninteracting pathogens are not independent and
require new tests of interaction. PLoS Biology, 17(12).
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