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Main messages

• Spatio-temporal stochastic models for informing 

control strategies

• Formulation of posterior measures for guiding 

control strategy

• Use of functional-model representations (non-

centered parameterisations) for efficient 

comparison

• Conclusions – where to look?



Generic problem

Observation of 

emerging epidemic

How should subsequent survey/control be 
designed in order to achieve a desired goal 
given available resources? 

Citrus canker epidemic: Dade County, Miami, Florida
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SEIR spatio-temporal model

S E:  If j is in state S at time t, then

Pr(j exposed (t, t+dt)) = (e + b Si K(dij, a ))dt +o(dt) 

E I:  (random sojourn time in E)

I R: (random sojourn time in I)

j

Parameters: q = (e, b, α, qI)

Here we focus on simpler SI model with cryptic infections – infections only 
become symptomatic after fixed (known) period D (c.f. Neri et al (2014)).
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Model fitting in Bayesian 

framework

• For ‘complete’ data x (e.g. times and nature of 

all transitions) (x | q) tractable

• Given censored/filtered/noisy data  y, (y | q) 

typically intractable

• Use data augmentation and sample from 

(q, x |y)  (q)(x, y|q)

using e.g. MCMC

• Updating x often requires reversible-jump 

techniques given variable dimension 

(See e.g. GJG, 1997, O’Neill & Roberts, 1999, Streftaris & GJG, 2004, Forrester et al., 2007, GJG et 

al., 2006, Chis-Ster et al. 2008, Starr et al. 2009, Jewell & Roberts, 2007, Neri et al., 2014, Lau et 

al., 2015)



Functional-model representations

q~f(q) q~(q)

x = h(q, q)

y = g(x)Observation

‘Complete’ data

Functional models (Dawid & Stone, 1983)

Consider outcome as deterministic function 
h(q, q) where q has known distribution 
independent of q.

In model choice q can be used as a latent 
residual process.

Investigating (q, q |y) rather than (q, x | y) 
facilitates model assessment via latent 
classical tests.

Here we extend the idea to formulate models for epidemic dynamics in the 
presence of control d, so that x = h*(q, q, d). 



Sellke Construction (Sellke, 1983)

Assigns threshold qi to each individual. If Ri(t) denotes infectious 
challenge to i at time t, infection time xi occurs when integrated 
challenge reaches threshold

 Epidemic dynamics specified (for SI with cryptic) by q (vector of 
Sellke Thresholds) and q, i.e. (x = h(q, q)).

 For controls d, based on removal of infected individuals, it 
follows that x = h*(q, q, d).

 Gives a means of coupling epidemic trajectories under different 
control strategies.
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Control strategies

• Based on removal of hosts found to be infected 

at control time tc.

• N hosts can be targeted (resource constraint)

• Impact assessed at time tA e.g. via number of 

infections occurring by tA.

Observation of 

emerging epidemic

tobs tc TAy



Which hosts j to target?

Based on E(GM(x(t), j) | y) at some time t > tobs

Candidate measures - (xj denotes infection time of j) 

 GR(x(t), j) = I{ xj < t} - ‘Risk’

 GH(x(t), j) = S xi > t, i ≠ j bK(dij, a)  - ‘Hazard’

 GT(x(t), j) = GR(x(t), j) x GH(x(t), j)  - ‘Threat’



Simulated epidemic 1

• Host population of size 1000 uniformly located 

over square region

• Simulate epidemic from SI model with:

𝛼 = 0.08, 𝛽 = 7.10−6, 𝜖 = 5.10−5 and 

𝐾 𝑑, 𝛼 =
1

2𝜋𝑑𝛼
exp(−𝑑/𝛼)

• Observed data y, snapshots of symptomatic sets 

at  t =130, 160, 190,….,460

• Control applied at 𝑡𝑐=460, 470

• Performance measure – reduction in posterior 

expectation of number of infections up to time 

𝑡𝐴=500 (relative to uncontrolled epidemic)



Estimating expected reduction

• Use random sample from (q, x(t) | y) to generate 

sample of size m from (q, Q |y).

• Let u(x(T)) denote the number of infections by time T for 

trajectory x(T). Let d denote control strategy.

x(T) = h(q, Q), xd(T) = h*(q, Q, d)

EER(d) = 
1

𝑛
Si {u(h*(qi, Qi, d)) – u(h(qi, Qi))}

• Here we take m = 1000 draws of (qi, Qi) using these as a 

test-bed of ‘pre-epidemics’ on which to compare controls.



Results – snapshots of 

system state



Maps of risk, hazard threat

• The hazard values  are greatest in regions of low infection while the risk 
• measure is greatest for symptomatic individuals.

risk hazard



• The dependence of the threat measure
on the positions of likely susceptible
individuals in relation to an infected host
can be discerned

• The infected hosts (circled) in the top
left corner of the population naturally
exhibit high values of the risk.

• The corresponding threat measure is 
comparatively lower for these hosts, as
a high proportion of their immediate
neighbours are already infected.

threat



EER(tA) and expected infections



Expected number of 

removals

• Marginally improved control 
provided by threat map at 
expense of marginally fewer 
removals.

• Risk and threat generally 
comparable – suggesting risk of 
infection is main determinant in 
threat map.

• Intuitive given uniform 
distribution of hosts (?) and 
relatively homogenous 
appearance of the epidemic.



Clustered host populations

• Citrus locations from Broward county

• 1111 trees spatially distributed

• Citrus canker epidemic on this 

population analysed by Neri et al 

(2014)

• Canker typically controlled using ring-

culling strategies (not yet considered 

in this framework but amenable to it)

• Simulate epidemics of 2 types:

- exponential kernel with primary

- exponential kernel no primary



Snapshots  with primary



Snapshots  without primary



Maps, no primary

Risk Hazard



Threat
• The 111 symptomatic hosts detected

during the survey are indicated by the 
black circles.

• A cluster with intermediate risk (B) leads 
to high threat due to the high hazard.

• while one with very low risk (A) ends up 
with relatively low threat even though the
hazard is high.



𝑑𝑑𝑑

EER(tA) and expected infections,Case (I)



• Difference in performance between the risk
and threat measure than was observed for
the uniformly distributed population.
prioritisation based

• Prioritisation based on the threat map  is 
the most cost-effective control strategy in
reducing the impact of the epidemics.

• With scarce resources (lower values of N’ ) 
the difference between results for the 
threat and risk measure decreasing as N’
increases.

• The change in the discrepancy between
threat and risk maps with increasing N’ is
most pronounced in Case (II),

Expected number of removals,

Case (I)



𝑑𝑑𝑑

EER(tA) and expected infections,Case (II)



• For small values of N’ the risk map’s 
performance improves little on that of the
hazard map but converges to that of the
threat map as N’ approaches its maximal
value.

• Less removal with the threat compared to
the risk and hazard with higher host saved.

Expected number of removals,

Case (II)



Summing up

 Data augmentation valuable for designing control strategies.

 Removal of hosts based on the threat map is the most effective strategy to

reduce the impact of an epidemic – even though fewer hosts are targeted 

for removal.

 Latent processes (Sellke thresholds)  can be used to

couple epidemics and subsequently reduce the variability in the difference

of control strategies. 

 Sample size needed for the estimation is reduced compared to an 

independent sampling.

 The approach is parallisable .



Thank you


