
Introduction Heterogeneous Dispersal Refuge model

Recent advances in the study of non local models in
population dynamics
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Outline of this talk

1· Heterogeneous dispersal process
1. Context/Motivation
2. Results
3. Idea of the Proofs

2· Study of the impact of some agricultural management on
non target species
1. Context/Motivation
2. Results
3. Idea of the Proofs
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I. Heterogeneous dispersal
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Main motivation

Analysis of gene flux in a population of tree (E.Klein)

•Complex Landscape

•Want to understand the dynamics of a tree species ?

•Understand the genetic structure after colonisation ?

Main feature

Using genetics markers you have the technology to acquire data and analyse it
statistically in order to say which is the mother/father of whom and describe the
dynamics in terms of a dispersal kernel.

Questions asked

Modelling of simple heterogeneous Dispersal which is usable to do Bayesian Statistics ?
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Continuous Model in population dynamic

Aim’s :

Describe accurately the evolution of a species in a natural environment with a
good feed back from the collected data

Main assumptions :

• The dispersal of an individual is governed by a probability density intrinsic to the
species.

• The environment is heterogeneous and affect the dispersal in all possible ways.
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The Model considered :

The dispersal process considered

∂u
∂t

=

∫
Ω

K
(

x1 − y1

h1(x)g1(y)
; . . . ;

xn − yn

hn(x)gn(y)

)
u(y) dy − c(x)u

u(0, x) = u0

Ω ⊂ Rn is an open subset.

• c(x) :=
∫

Ω K
(

y1−x1
g1(x)h1(y)

; . . . ; yn−xn
gn(x)hn(y)

)
dy .

• K ∈ Cc(Rn), K ≥ 0, ‖K‖1 = 1, supp(K ) := B(0, 1)

• hi , gi ∈ C(Ω), hi , gi ≥ 0 describe the impact of the environment on the dispersal
process

Interpretation of the impact of g and h

• g represents the constrain of the environment to the displacement.
• h can be assimilated to a measure of attractiveness of a site.
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Effects of the environment on the dispersal

To simplify let gi = gj . Fix x0 ∈ Ω , then to jump to the position x0, the individuals at the
position y ∈ Ω must verify∥∥∥∥x0 − y

g(y)

∥∥∥∥ ≤ 1⇐⇒ y ∈ B(x0, g(y))⇐⇒ x0 ∈ B(y , g(y)).

g(y) = 0 : No migration for those individuals g(y) ≈ 0 : local migration
g(y) >> 1 : Long range migration g(y) = +∞ : No constraint of distance
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Effects of the environment on the dispersal

To simplify let gi = gj and hi = hj . Fix x0 ∈ Ω , then to jump to the position x0, the
individuals at the position y ∈ Ω must verify∥∥∥∥ x0 − y

h(x0)g(y)

∥∥∥∥ ≤ 1⇐⇒ y ∈ B(x0, h(x0)g(y))⇐⇒ x0 ∈ B(y , h(x0)g(y)).

• h(x)g(y) = 0 : No migration for those individuals to the location x
• h(x)g(y) ≈ 0 : local migration to the location x
• h(x)g(y) >> 1 : Long range migration to the location x
• h(x)g(y) = +∞ : No constraint of distance
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Results

Known Results :

• Ω bounded, g, h > 0 standard theory
• Homogeneous dispersal processes (gi = gj ≡ Cste) (Rossi, Chasseigne, Chavez)
• General kernel with a detailed balanced condition (Perthame, Mischler, ...)
• h ≡ Cste, (Cortazar, C., Elgueta, Martinez, Garcia-Mellian,... )

Results (C., Martinez 2012) :

• Characterisation of the asymptotic behaviour of the solution u in terms of
the behaviour of h, g.

Let g > 0, h ≥ 0 bounded. Then, ∀ u0 ∈ L1 ∩ L∞,
• The bounded Case

(i) then
u(x, t)→ p(x)

where p(x) is the positive principal eigenfunction
• The unbounded Case

(ii) For h ≡ Cste in Rn \ Ω′ where Ω′ is bounded then

∀ x ∈ R lim
t→∞

u(x, t) = 0.
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Idea of the proof

Lemma 1

If u0 ∈ L1 ∩ L∞ then
‖u0‖1 = ‖u‖1, ‖u‖∞ ≤ C.

Lemma 2

There exists a positive stationary solution p of the problem i.e. p solves :∫
Ω

K (x , y)p(y) dy − c(x)p = 0

Moreover :
• If Ω is bounded, p is unique (up to a multiplicative constant) and bounded
• If Ω = R and h ≡ Cste in R \ Ω′ then infRp > c0 ≥ 0

Lemma 3

The quantity u2

p satisfies :

∂

∂t

∫
Ω

u2

p
= −

∫
Ω

∫
Ω

K (x , y)p(y)

[
u(y)

p(y)
−

u(x)

p(x)

]2
dxdy .
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Idea of the proof of Lemma 2

sketch of the proof when the gi ≥ αi > 0, hi > 0

• Ω bounded
• M[φ] := 1

k(x)

∫
Ω

K (x, y)φ(y) dy is a positive compact operator
• Krein-Rutman + Mass preservation =⇒ φp is our desired solution
• Convergence using the classical Relative Entropy method

• Ω unbounded
• (Ωn)n∈N sequence of bounded domain, so that Ωn → Ω
• (φn)n∈N the associated stationary solution to a truncated problem set on Ωn
• Harnack type inequality (C 2011), i.e, For all compact set ω ⊂⊂ Ω, ∃C1 > 0, so that for

all stationary positive bounded solution v

sup
ω

v(x) ≤ C inf
ω

v(x).

• For Ω = R, another Harnack type inequality (CCEM, 2007), i.e. ∃C,D > 0 so that for all
stationary positive bounded solution v then ∀x, y ∈ R,

v(x) ≤ C
∫ y+D

y−D
v(s) ds.



Introduction Heterogeneous Dispersal Refuge model

Example of a numerical simulation

”Modelling of a hole” (g ≈ 0), h ≡ 1
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II. Study of the impact of an agricultural
practice on non target species ( ERC
Project AMIGA, A. Mesean)
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Context of the study

Schematics of a typical agricultural landscape

The GM fields are target some particular pest.

Questions

• How the introduction of the GM fields affects the pest ?
• What are the side effects on non target species (species which belongs to the

same group of the pest but is harmless ) ?
• What are the consequence of GM fields on biodiversity ?
• Is there any way to control the proportion of GM fields to minimize the damage

and conserve biodiversity and maximize some agricultural benefit ?
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The refuge model considered

∂u
∂t

= KΩ [u] + a0(x)u + λa1(x)u − β(x)up (1)

where Ω is a bounded set of Rn, λ ∈ R, p > 1 and
• a0, a1, β ∈ C(Ω̄), ai , β ≥ 0
• K is an integral operator describing the dispersal of the density of individuals

K[u] :=

∫
Ω

K (x , y)u(y) dy − u(x)

∫
Ω

K (y , x) dy

with K ∈ C(Ω̄, Ω̄), K ≥ 0 so that

∃c0 > 0, ε0 > 0 such that inf
x∈Ω

(
inf

y∈B(x,ε0)
K (x , y)

)
> c0.

Typical example : K (x , y) = J
(

x1−y1
h1(x)g1(y)

; . . . ; xn−yn
hn(x)gn(y)

)
.

Interpretation

• K (x , y) describes the probability to jump from a site y to a site x . We assume that
• a0, β represent an intrinsic growth and death rate
• λa1 represent controlled area (∼The GM field)



Introduction Heterogeneous Dispersal Refuge model

Known Results

• For operator K is replace by a diffusion operator L := aij (x)∂ij + bi∂i + c(x)
(Ouang, Fraile, Garcia-mellan, Lopez-Gomez, Koch- Medina,Du, Ma...).

• For homogeneous symmetric nonlocal K( i.e. KΩ [u] :=
∫

Ω J(x − y)u(y) dy − u)
(Garcia-mellan, Rossi)

Absence of refuge : i.e β > 0

There exists λ∗ so that there exists a unique positive stationary solution to (1) if and
only if λ > λ∗. Moreover, the map λ→ uλ is monotone increasing and we have

∀ x ∈ Ω̄ lim
λ→+∞

uλ(x) = +∞

∀ x ∈ Ω̄ lim
λ→λ∗,+

uλ = 0

Existence of a refuge : i.e β|ω ≡ 0.

There exists λ∗ < λ∗∗ that there exists a bounded solution to (1) if and only if
λ∗∗ > λ > λ∗. Moreover, the map λ→ uλ is monotone increasing and we have

∀ x ∈ Ω̄ lim
λ→λ∗∗,−

uλ(x) = +∞

∀ x ∈ Ω̄ lim
λ→λ∗,+

uλ(x) = 0
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results

Absence of refuge : i.e β > 0 C, 2012

For K , ai , β as above then there exists λ∗ ∈ [−∞;∞), so that for all λ > λ∗ there
exists a unique positive stationary solution uλ of (1) and when λ∗ ∈ R, there is no
positive stationary solution to (1) for all λ ≤ λ∗. Moreover, the map λ→ uλ is
monotone increasing and we have

∀ x ∈ Ω̄ lim
λ→+∞

uλ(x) = +∞

∀ x ∈ Ω̄ lim
λ→λ∗,+

uλ(x) = u∞

where u∞ is the unique non negative solution of∫
Ω\Ω0

K (x , y)u(y)dy − k(x)u + a0(x)u − βup = 0 in Ω \ Ω0

u ≡ 0 in Ω0

where Ω0 := {x ∈ Ω| a1(x) > 0}.
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results

Existence of a refuge : i.e β|ω ≡ 0., C, 2012

For K , ai , β as above then if ω ⊂ Ω \Ω0 or ω ⊂⊂ Ω0, there exists λ∗ < λ∗ ∈ [−∞;∞],
so that there exists a unique positive bounded stationary solution to (1) if and only if
for all λ∗ < λ < λ∗∗. there exists no bounded positive stationary solution uλ of (1).
Moreover, the map λ→ uλ is monotone increasing and we have

∀ x ∈ Ω̄ lim
λ→λ∗∗,−

uλ(x) = +∞

∀ x ∈ Ω̄ lim
λ→λ∗,+

uλ(x) = u∞

where u∞ is the unique non negative solution of∫
Ω\Ω0

K (x , y)u(y)dy − k(x)u + a0(x)u − βup = 0 in Ω \ Ω0

u ≡ 0 in Ω0

where Ω0 := {x ∈ Ω| a1(x) > 0}.
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Survival in a heterogeneous habitat :

Known Characterisation for a refuge model :

KΩ [u] + a(x)u − β(x)up = 0 (2)

When the operator K is replace by a diffusion operator L := aij (x)∂ij + bi (x) + c(x)
(Fraile, Garcia-Mellan, Lopez-Gomez, Cantrell-Cosner, Berestycki-Hamel- Roques,....)
then there exists a unique positive solution to (2) if and only if
λ1(LΩ + a) < 0 < λ1(Lω + a).

Characterisation obtained (C, 2012)

There exists a unique positive solution to (2) if and only if
µp(KΩ + a) < 0 < µp(Kω + a), where µp is the generalized principal eigenvalue of the
operator K+ a defined by

µp := sup{µ ∈ R | ∃φ ∈ C(Ω), φ > 0, so that K[φ] + (a + µ)φ ≤ 0}

.

Remarks :

• When β > 0 (2) its of KPP type and ω = ∅ =⇒ µp(Kω + a) = +∞.
• Main difficulties : No compactness, Existence of eigen function is not guarantee.
• Methods :Sub and super-solution, Spectral Theory of non compact positive

operator, . . . .
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Proposition 1

(i) Assume Ω1 ⊂ Ω2, then for the two operators

LΩi
[u] + a(x)u :=

∫
Ωi

K (x , y)u(y) dy − k(x)u + a(x)u

respectively defined on C(Ω1) and C(Ω2) we have

µp(LΩ1
+ a(x)) ≥ µp(LΩ2

+ a(x)).

(ii) Fix Ω and assume that a1(x) ≥ a2(x), then

µp(LΩ + a2(x)) ≥ µp(LΩ + a1(x)).

(iii) µp(LΩ + a(x)) is Lipschitz continuous in a(x). More precisely,

|µp(LΩ + a(x))− µp(LΩ + b(x))| ≤ ‖a(x)− b(x)‖∞

(iv) Assume Ω1 ⊂ Ω2 and consider the two operators LΩ1
,LΩ2

. Assume that the
corresponding principal eigenvalue are associated to a positive continuous
principal eigenfunction. Then we have

|µp(LΩ1
+ a(x))− µp(LΩ2

+ a(x))| ≤ C0|Ω2 \ Ω1|,

where C0 depends only on K .
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Idea of the proofs

Existence

For µp < 0, using an approximation criteria (C 2010), ∃φ > 0, φ ∈ L∞ so that for ε
small :

KΩ [εφp] + a(x)εφp − βεpφp
p ≥ 0.

Due the presence of the refuge, the construction of the supersolution is based on

ψ1 :=

{
C1η1 in Ω \ ω δ

2

0 elsewhere,
ψ2 :=

{
C2η2Ψδ in ωδ
0 elsewhere.

where ωδ := {x ∈ Ω | d(x ;ω) > δ},Ψδ is the positive continuous eigenfunction
associated to t µp(Kωδ + aε), ηi characteristic function, C1 and C2 are positive
constants.
• ψ := sup(ψ1, ψ2) is a supersolution for C1,C2, δ well chosen.

Monotone Iteration scheme give the existence. Uniqueness bis obtained by sweeping
method.
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Non-existence

When µp(Kω + a) ≤ 0 the argument reads as follows.
• On ω, u satisfies LΩ [u] + au = 0, which implies that maxω̄ a < 0 and we have

Lω [u] + au = −
∫

Ω\ω
K (x , y)u(y) dy ≤ 0. (3)

• Key observation µp(Lω + a) ≤ 0 < −maxω̄ a =⇒ eigenfunction φ associated to
µp(Lω + a).

• As a consequence, ∃φ∗ > associated to µp(K∗
ω

+ a) the dual operator of Kω + a.
• Multiply (3) by φ∗ and integrating over ω it follows∫

ω
φ∗(x)Kω [u](x)dx + auφ∗(x)dx ≤ −c0

∫
ω
φ∗

(∫
Ω\ω

K (x , y) dy

)
,

which using Fubini leads to the contradiction

0 ≤ −µp(K∗
ω

+ a)

∫
ω
φ∗u ≤ −c0

∫
ω
φ∗

(∫
Ω\ω

K (x , y) dy

)
< 0.
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Non-existence

When λp ≥ 0, we argue as follow :
• From (2) there exists δ and c0 so a solution u{

infΩ u ≥ c0,

infx∈Ω(k(x)− a(x) + β(x)up−1) ≥ δ.

• From monotone properties of g(x , s) := (a− β(x)sp−1),

=⇒ a− βup−1 ≤ a(x)− βcp−1
0 ≤ a.

• Set γ(x) = a(x)− β(x)cp−1
0 ≤ a(x). By construction,

µp(KΩ + γ(x)) ≥ µp(KΩ + a(x)) ≥ 0.

• From (2), we have KΩ [u] + γu ≥ KΩ [u] + au − βup = 0, with a strict inequality for
any x ∈ Ω \ ω.

• Key point : There exists δ > 0 and a positive continuous function φ so that
infΩ φ > δ and

KΩ [φ] + γφ ≤ 0.

• From φ > δ we can define

τ∗ := inf{τ > 0|u ≤ τφ}.

and show that τ∗ = 0.
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Idea of the proofs of the Theorem

Abscence of refuge

• First observation the existence of a positive solution relates to the sign of

µp(KΩ + a0 + λa1).

• Check easily that for λ ≥ 0 then µp(KΩ + a0 + λa1) ≤ µp(KΩ + a0) < 0. Survival
criteria =⇒ existence of a positive stationary solution for λ ≥ 0.

• Key observation, Proposition 1 for all λ we have

µp(K
Ω\Ω0

+ a0) = µp(K
Ω\Ω0

+ a0 + λa1) ≥ µp(KΩ + a0 + λa1).

• Case µp(K
Ω\Ω0

+ a0) < 0 =⇒ µp(KΩ + a0 + λa1) < 0 =⇒ existence of a
solution for all λ and λ∗ = −∞

• Case µp(K
Ω\Ω0

+ a0) = 0

• Either µp(K
Ω

+ a0 + λa1) < 0 for all λ ≤ 0 and λ∗ = −∞.
• Or there exists ∃λ0 ≤ 0 so that µp(K

Ω
+ a0 + λ0a1) = 0.

λ
∗ := sup{λ |µp(K

Ω
+ a0 + λa1) = 0}.

• Case µp(K
Ω\Ω0

+ a0) > 0.
• For λ << −1 then µp(K

Ω
+ a0 + λa1) > 0. More precisely,

lim inf
λ→−∞

µp(K
Ω

+ a0 + λa1) > 0.
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Perspectives and future work

Conclusion

• We provide an simple heterogeneous dispersal process which takes into account
both the starting point and the end point of the jumps

• We also provide a promising possible way to evaluate agricultural strategies on
non targeted species which already have given some insight on the structure of
the population.

future Work

• Better understanding of the heterogeneous dispersal process in unbounded
domain

• Other distance/more general framework ?
• Remove the constraint on ω on the refuge dynamics
• Have a better understanding of λ∗, λ∗∗ with respect to a1. Optimisation
• Incorporate seasonality by introducing time dependant coefficient
• Unbounded death rates ?
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Thank you for your attention
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