Recent advances in the study of non local models in population dynamics

Jérôme Coville

26 août 2012

Outline of this talk

1. Heterogeneous dispersal process

- 1. Context/Motivation
- 2. Results
- 3. Idea of the Proofs

2. Study of the impact of some agricultural management on non target species

- 1. Context/Motivation
- 2. Results
- 3. Idea of the Proofs

I. Heterogeneous dispersal

Main motivation

Analysis of gene flux in a population of tree (E.Klein)

Complex Landscape

•Want to understand the dynamics of a tree species?

•Understand the genetic structure after colonisation?

Main feature

Using genetics markers you have the technology to acquire data and analyse it statistically in order to say which is the mother/father of whom and describe the dynamics in terms of a dispersal kernel.

Questions asked

Modelling of simple heterogeneous Dispersal which is usable to do Bayesian Statistics?

Continuous Model in population dynamic

Describe accurately the evolution of a species in a natural environment with a good feed back from the collected data

Main assumptions :

- The dispersal of an individual is governed by a probability density intrinsic to the species.
- The environment is heterogeneous and affect the dispersal in all possible ways.

The Model considered :

The dispersal process considered

$$\begin{aligned} \frac{\partial u}{\partial t} &= \int_{\Omega} K\left(\frac{x_1 - y_1}{h_1(x)g_1(y)}; \dots; \frac{x_n - y_n}{h_n(x)g_n(y)}\right) u(y) \, dy - c(x)u \\ u(0, x) &= u_0 \\ \Omega \subset \mathbb{R}^n \text{is an open subset.} \end{aligned}$$

•
$$c(x) := \int_{\Omega} K\left(\frac{y_1 - x_1}{g_1(x)h_1(y)}; \ldots; \frac{y_n - x_n}{g_n(x)h_n(y)}\right) dy.$$

•
$$K \in C_c(\mathbb{R}^n), K \ge 0, \|K\|_1 = 1, supp(K) := B(0, 1)$$

h_i, *g_i* ∈ *C*(Ω), *h_i*, *g_i* ≥ 0 describe the impact of the environment on the dispersal process

Interpretation of the impact of g and h

- g represents the constrain of the environment to the displacement.
- *h* can be assimilated to a measure of attractiveness of a site.

Effects of the environment on the dispersal

To simplify let $g_i = g_j$. Fix $x_0 \in \Omega$, then to jump to the position x_0 , the individuals at the position $y \in \Omega$ must verify

$$\left\|\frac{x_0-y}{g(y)}\right\| \leq 1 \iff y \in B(x_0,g(y)) \iff x_0 \in B(y,g(y)).$$

g(y) = 0: No migration for those individuals g(y) >> 1: Long range migration $g(y) \approx 0$: local migration $g(y) = +\infty$: No constraint of distance

Effects of the environment on the dispersal

To simplify let $g_i = g_j$ and $h_i = h_j$. Fix $x_0 \in \Omega$, then to jump to the position x_0 , the individuals at the position $y \in \Omega$ must verify

$$\left\|\frac{x_0-y}{h(x_0)g(y)}\right\| \leq 1 \iff y \in B(x_0, h(x_0)g(y)) \iff x_0 \in B(y, h(x_0)g(y))$$

- h(x)g(y) = 0: No migration for those individuals to the location x
- $h(x)g(y) \approx 0$: local migration to the location x
- h(x)g(y) >> 1 : Long range migration to the location x
- $h(x)g(y) = +\infty$: No constraint of distance

Results

Known Results :

- Ω bounded, g, h > 0 standard theory
- Homogeneous dispersal processes ($g_i = g_j \equiv Cste$) (Rossi, Chasseigne, Chavez)
- General kernel with a detailed balanced condition (Perthame, Mischler, ...)
- h = Cste, (Cortazar, C., Elgueta, Martinez, Garcia-Mellian,...)

Results (C., Martinez 2012) :

• Characterisation of the asymptotic behaviour of the solution *u* in terms of the behaviour of *h*, *g*.

Let g > 0, $h \ge 0$ bounded. Then, $\forall u_0 \in L^1 \cap L^\infty$,

The bounded Case

(i) then

 $u(x,t) \rightarrow p(x)$

where p(x) is the positive principal eigenfunction

- The unbounded Case
 - (ii) For $h \equiv Cste$ in $\mathbb{R}^n \setminus \Omega'$ where Ω' is bounded then

 $\forall x \in \mathbb{R} \lim_{t\to\infty} u(x,t) = 0.$

Idea of the proof

Lemma 1

If $u_0 \in L^1 \cap L^\infty$ then

$$\|u_0\|_1 = \|u\|_1, \quad \|u\|_\infty \leq C.$$

Lemma 2

There exists a positive stationary solution p of the problem i.e. p solves :

$$\int_{\Omega} K(x,y) p(y) \, dy - c(x) p = 0$$

Moreover :

- If Ω is bounded, p is unique (up to a multiplicative constant) and bounded
- If $\Omega = \mathbb{R}$ and $h \equiv Cste$ in $\mathbb{R} \setminus \Omega'$ then $inf_{\mathbb{R}}p > c_0 \ge 0$

Lemma 3

The quantity
$$\frac{u^2}{\rho}$$
 satisfies :
 $\frac{\partial}{\partial t} \int_{\Omega} \frac{u^2}{\rho} = -\int_{\Omega} \int_{\Omega} \mathcal{K}(x, y) p(y) \left[\frac{u(y)}{p(y)} - \frac{u(x)}{p(x)} \right]^2 dx dy.$

Idea of the proof of Lemma 2

sketch of the proof when the $g_i \ge \alpha_i > 0$, $h_i > 0$

- Ω bounded
 - $\mathcal{M}[\phi] := \frac{1}{k(x)} \int_{\Omega} K(x, y) \phi(y) \, dy$ is a positive compact operator
 - Krein-Rutman + Mass preservation $\implies \phi_p$ is our desired solution
 - · Convergence using the classical Relative Entropy method
- Ω unbounded
 - $(\Omega_n)_{n\in\mathbb{N}}$ sequence of bounded domain, so that $\Omega_n \to \Omega$
 - $(\phi_n)_{n \in \mathbb{N}}$ the associated stationary solution to a truncated problem set on Ω_n
 - Harnack type inequality (C 2011), i.e, For all compact set ω ⊂⊂ Ω, ∃C1 > 0, so that for all stationary positive bounded solution ν

$$\sup_{\omega} v(x) \leq C \inf_{\omega} v(x).$$

For Ω = ℝ, another Harnack type inequality (CCEM, 2007), i.e. ∃C, D > 0 so that for all stationary positive bounded solution v then ∀x, y ∈ ℝ,

$$v(x) \leq C \int_{y-D}^{y+D} v(s) \, ds.$$

Example of a numerical simulation

II. Study of the impact of an agricultural practice on non target species (ERC Project AMIGA, A. Mesean)

Context of the study

Questions

- How the introduction of the GM fields affects the pest?
- What are the side effects on **non target species** (species which belongs to the same group of the pest but is harmless)?
- What are the consequence of GM fields on biodiversity?
- Is there any way to control the proportion of GM fields to minimize the damage and conserve biodiversity and maximize some agricultural benefit?

The refuge model considered

$$\frac{\partial u}{\partial t} = \mathcal{K}_{\Omega}[u] + a_0(x)u + \lambda a_1(x)u - \beta(x)u^{\rho}$$
(1)

where Ω is a bounded set of \mathbb{R}^n , $\lambda \in \mathbb{R}$, p > 1 and

- $a_0, a_1, \beta \in C(\overline{\Omega}), a_i, \beta \geq 0$
- \mathcal{K} is an integral operator describing the dispersal of the density of individuals

$$\mathcal{K}[u] := \int_{\Omega} \mathcal{K}(x, y) u(y) \, dy - u(x) \int_{\Omega} \mathcal{K}(y, x) \, dy$$

with $K \in C(\overline{\Omega}, \overline{\Omega})$, $K \ge 0$ so that

$$\exists c_0 > 0, \epsilon_0 > 0 \quad \text{such that} \inf_{x \in \Omega} \left(\inf_{y \in B(x, \epsilon_0)} \mathcal{K}(x, y) \right) > c_0$$

Typical example :
$$\mathcal{K}(x, y) = J\left(\frac{x_1 - y_1}{h_1(x)g_1(y)}; \dots; \frac{x_n - y_n}{h_n(x)g_n(y)}\right)$$

Interpretation

- K(x, y) describes the probability to jump from a site y to a site x. We assume that
- a_0, β represent an intrinsic growth and death rate
- λa₁ represent controlled area (~The GM field)

Known Results

- For operator \mathcal{K} is replace by a diffusion operator $\mathcal{L} := a_{ij}(x)\partial_{ij} + b_i\partial_i + c(x)$ (Ouang, Fraile, Garcia-mellan, Lopez-Gomez, Koch- Medina, Du, Ma...).
- For homogeneous symmetric nonlocal $\mathcal{K}(i.e. \mathcal{K}_{\Omega}[u] := \int_{\Omega} J(x y)u(y) dy u)$ (Garcia-mellan, Rossi)

Absence of refuge : i.e $\beta > 0$

There exists λ^* so that there exists a unique positive stationary solution to (1) **if and only if** $\lambda > \lambda^*$. Moreover, the map $\lambda \to u_{\lambda}$ is monotone increasing and we have

$$\forall x \in \overline{\Omega} \quad \lim_{\lambda \to +\infty} u_{\lambda}(x) = +\infty$$
$$\forall x \in \overline{\Omega} \quad \lim_{\lambda \to \lambda^{*,+}} u_{\lambda} = 0$$

Existence of a refuge : i.e $\beta_{|\omega} \equiv 0$.

There exists $\lambda^* < \lambda^{**}$ that there exists a bounded solution to (1) if and only if $\lambda^{**} > \lambda > \lambda^*$. Moreover, the map $\lambda \to u_{\lambda}$ is monotone increasing and we have

$$\forall x \in \overline{\Omega} \quad \lim_{\lambda \to \lambda^{**,-}} u_{\lambda}(x) = +\infty$$
$$\forall x \in \overline{\Omega} \quad \lim_{\lambda \to \lambda^{*,+}} u_{\lambda}(x) = 0$$

results

Absence of refuge : i.e $\beta > 0$ C, 2012

For K, a_i , β as above then there exists $\lambda^* \in [-\infty; \infty)$, so that for all $\lambda > \lambda^*$ there exists a unique positive stationary solution u_{λ} of (1) and when $\lambda^* \in \mathbb{R}$, there is no positive stationary solution to (1) for all $\lambda \le \lambda^*$. Moreover, the map $\lambda \to u_{\lambda}$ is monotone increasing and we have

$$\begin{array}{l} \forall \, x \in \bar{\Omega} \quad \lim_{\lambda \to +\infty} u_{\lambda}(x) = +\infty \\ \forall \, x \in \bar{\Omega} \quad \lim_{\lambda \to \lambda^{*,+}} u_{\lambda}(x) = u_{\infty} \end{array}$$

where u_{∞} is the unique non negative solution of

$$\int_{\Omega \setminus \Omega_0} K(x, y) u(y) dy - k(x) u + a_0(x) u - \beta u^p = 0 \quad \text{in} \quad \Omega \setminus \Omega_0$$
$$u \equiv 0 \quad \text{in} \quad \Omega_0$$

where $\Omega_0 := \{x \in \Omega | a_1(x) > 0\}.$

results

Existence of a refuge : i.e $\beta_{|\omega} \equiv 0.,$ C, 2012

For K, a_i , β as above then if $\omega \subset \Omega \setminus \Omega_0$ or $\omega \subset \subset \Omega_0$, there exists $\lambda^* < \lambda^* \in [-\infty; \infty]$, so that there exists a unique positive bounded stationary solution to (1) **if and only if** for all $\lambda^* < \lambda < \lambda^{**}$. there exists no bounded positive stationary solution u_λ of (1). Moreover, the map $\lambda \to u_\lambda$ is monotone increasing and we have

$$\forall x \in \overline{\Omega} \quad \lim_{\lambda \to \lambda^{*,+}} u_{\lambda}(x) = +\infty$$
$$\forall x \in \overline{\Omega} \quad \lim_{\lambda \to \lambda^{*,+}} u_{\lambda}(x) = u_{\infty}$$

where u_{∞} is the unique non negative solution of

$$\int_{\Omega \setminus \Omega_0} K(x, y) u(y) dy - k(x) u + a_0(x) u - \beta u^p = 0 \quad \text{in} \quad \Omega \setminus \Omega_0$$
$$u \equiv 0 \quad \text{in} \quad \Omega_0$$

where $\Omega_0 := \{ x \in \Omega | a_1(x) > 0 \}.$

Survival in a heterogeneous habitat :

Known Characterisation for a refuge model :

 $\mathcal{K}_{\Omega}[u] + a(x)u - \beta(x)u^{p} = 0$

(2)

When the operator \mathcal{K} is replace by a diffusion operator $\mathcal{L} := a_{ij}(x)\partial_{ij} + b_i(x) + c(x)$ (Fraile, Garcia-Mellan, Lopez-Gomez, Cantrell-Cosner, Berestycki-Hamel- Roques,....) then there exists a unique positive solution to (2) **if and only if** $\lambda_1(\mathcal{L}_{\Omega} + a) < 0 < \lambda_1(\mathcal{L}_{\omega} + a)$.

Characterisation obtained (C, 2012)

There exists a unique positive solution to (2) **if and only if** $\mu_{\rho}(\mathcal{K}_{\Omega} + a) < 0 < \mu_{\rho}(\mathcal{K}_{\omega} + a)$, where μ_{ρ} is the generalized principal eigenvalue of the operator $\mathcal{K} + a$ defined by

$$\mu_{\boldsymbol{\rho}} := \sup\{\mu \in \mathbb{R} \mid \exists \phi \in \boldsymbol{C}(\Omega), \phi > 0, \text{ so that } \mathcal{K}[\phi] + (\boldsymbol{a} + \mu)\phi \leq 0\}$$

Remarks :

- When $\beta > 0$ (2) its of KPP type and $\omega = \emptyset \Longrightarrow \mu_{\rho}(\mathcal{K}_{\omega} + a) = +\infty$.
- Main difficulties : No compactness, Existence of eigen function is not guarantee.
- Methods :Sub and super-solution, Spectral Theory of non compact positive operator,

Proposition 1

(i) Assume $\Omega_1 \subset \Omega_2$, then for the two operators

$$\mathcal{L}_{\Omega_i}[u] + a(x)u := \int_{\Omega_i} K(x, y)u(y) \, dy - k(x)u + a(x)u$$

respectively defined on $C(\Omega_1)$ and $C(\Omega_2)$ we have

$$\mu_{\mathcal{P}}(\mathcal{L}_{\Omega_1} + a(x)) \geq \mu_{\mathcal{P}}(\mathcal{L}_{\Omega_2} + a(x)).$$

(ii) Fix Ω and assume that $a_1(x) \ge a_2(x)$, then

$$\mu_{p}(\mathcal{L}_{\Omega} + a_{2}(x)) \geq \mu_{p}(\mathcal{L}_{\Omega} + a_{1}(x)).$$

(iii) $\mu_{\rho}(\mathcal{L}_{\Omega} + a(x))$ is Lipschitz continuous in a(x). More precisely,

 $|\mu_{\rho}(\mathcal{L}_{\Omega} + a(x)) - \mu_{\rho}(\mathcal{L}_{\Omega} + b(x))| \leq ||a(x) - b(x)||_{\infty}$

(iv) Assume $\Omega_1 \subset \Omega_2$ and consider the two operators $\mathcal{L}_{\Omega_1}, \mathcal{L}_{\Omega_2}$. Assume that the corresponding principal eigenvalue are associated to a positive continuous principal eigenfunction. Then we have

$$|\mu_{\mathcal{P}}(\mathcal{L}_{\Omega_{1}} + a(x)) - \mu_{\mathcal{P}}(\mathcal{L}_{\Omega_{2}} + a(x))| \leq C_{0}|\Omega_{2} \setminus \Omega_{1}|,$$

where C_0 depends only on K.

Idea of the proofs

Existence

For $\mu_p < 0$, using an approximation criteria (C 2010), $\exists \phi > 0, \phi \in L^{\infty}$ so that for ϵ small :

$$\mathcal{K}_{\Omega}[\epsilon\phi_{\rho}] + a(x)\epsilon\phi_{\rho} - \beta\epsilon^{\rho}\phi_{\rho}^{\rho} \geq 0.$$

Due the presence of the refuge, the construction of the supersolution is based on

$$\psi_1 := \begin{cases} C_1 \eta_1 & \text{in } \Omega \setminus \omega_{\frac{\delta}{2}} \\ 0 & \text{elsewhere,} \end{cases} \quad \psi_2 := \begin{cases} C_2 \eta_2 \Psi_{\delta} & \text{in } \omega_{\delta} \\ 0 & \text{elsewhere.} \end{cases}$$

where $\omega_{\delta} := \{x \in \Omega \mid d(x; \omega) > \delta\}, \Psi_{\delta}$ is the positive continuous eigenfunction associated to t $\mu_{\rho}(\mathcal{K}_{\omega_{\delta}} + a_{\epsilon}), \eta_i$ characteristic function, C_1 and C_2 are positive constants.

• $\psi := sup(\psi_1, \psi_2)$ is a supersolution for C_1, C_2, δ well chosen.

Monotone Iteration scheme give the existence. Uniqueness bis obtained by sweeping method.

Non-existence

When $\mu_{\rho}(\mathcal{K}_{\omega} + a) \leq 0$ the argument reads as follows.

On ω, u satisfies L_Ω[u] + au = 0, which implies that max_ω a < 0 and we have

$$\mathcal{L}_{\omega}[u] + au = -\int_{\Omega \setminus \omega} K(x, y) u(y) \, dy \le 0. \tag{3}$$

- Key observation μ_ρ(L_ω + a) ≤ 0 < − max_ω a ⇒ eigenfunction φ associated to μ_ρ(L_ω + a).
- As a consequence, ∃φ* > associated to μ_p(K^{*}_ω + a) the dual operator of K_ω + a.
- Multiply (3) by ϕ^* and integrating over ω it follows

$$\int_{\omega} \phi^*(x) \mathcal{K}_{\omega}[u](x) dx + a u \phi^*(x) dx \leq -c_0 \int_{\omega} \phi^*\left(\int_{\Omega \setminus \omega} \mathcal{K}(x, y) \, dy\right),$$

which using Fubini leads to the contradiction

$$0 \leq -\mu_{\mathcal{P}}(\mathcal{K}^*_{\omega} + a) \int_{\omega} \phi^* u \leq -c_0 \int_{\omega} \phi^* \left(\int_{\Omega \setminus \omega} \mathcal{K}(x, y) \, dy \right) < 0.$$

Non-existence

- When $\lambda_p \geq 0$, we argue as follow :
 - From (2) there exists δ and c_0 so a solution u

$$\inf_{\Omega} u \ge c_0,$$

$$\inf_{x \in \Omega} (k(x) - a(x) + \beta(x)u^{p-1}) \ge \delta.$$

• From monotone properties of $g(x, s) := (a - \beta(x)s^{p-1}),$ $\implies a - \beta u^{p-1} \le a(x) - \beta c_0^{p-1} \le a.$

• Set
$$\gamma(x) = a(x) - \beta(x)c_0^{p-1} \le a(x)$$
. By construction,

$$\mu_{p}(\mathcal{K}_{\Omega} + \gamma(x)) \geq \mu_{p}(\mathcal{K}_{\Omega} + a(x)) \geq 0.$$

- From (2), we have K_Ω[u] + γu ≥ K_Ω[u] + au − βu^p = 0, with a strict inequality for any x ∈ Ω \ ω.
- Key point : There exists $\delta>0$ and a positive continuous function ϕ so that $\inf_\Omega \phi>\delta$ and

$$\mathcal{K}_{\Omega}[\phi] + \gamma \phi \leq \mathbf{0}.$$

• From $\phi > \delta$ we can define

$$\tau^* := \inf\{\tau > \mathbf{0} | u \le \tau\phi\}.$$

and show that $\tau^* = 0$.

Idea of the proofs of the Theorem

Abscence of refuge

· First observation the existence of a positive solution relates to the sign of

$$\mu_{\mathcal{P}}(\mathcal{K}_{\Omega}+a_{0}+\lambda a_{1}).$$

- Check easily that for λ ≥ 0 then μ_ρ(K_Ω + a₀ + λa₁) ≤ μ_ρ(K_Ω + a₀) < 0. Survival criteria ⇒ existence of a positive stationary solution for λ ≥ 0.
- Key observation, Proposition 1 for all λ we have

$$\mu_{\rho}(\mathcal{K}_{\Omega \setminus \Omega_{0}} + a_{0}) = \mu_{\rho}(\mathcal{K}_{\Omega \setminus \Omega_{0}} + a_{0} + \lambda a_{1}) \geq \mu_{\rho}(\mathcal{K}_{\Omega} + a_{0} + \lambda a_{1}).$$

- Case $\mu_p(\mathcal{K}_{\Omega \setminus \Omega_0} + a_0) < 0 \Longrightarrow \mu_p(\mathcal{K}_\Omega + a_0 + \lambda a_1) < 0 \Longrightarrow$ existence of a solution for all λ and $\lambda^* = -\infty$
- Case $\mu_p(\mathcal{K}_{\Omega \setminus \Omega_0} + a_0) = 0$
 - Either $\mu_{\rho}(\mathcal{K}_{\Omega} + a_0 + \lambda a_1) < 0$ for all $\lambda \leq 0$ and $\lambda^* = -\infty$.
 - Or there exists $\exists \lambda_0 \leq 0$ so that $\mu_p(\mathcal{K}_{\Omega} + a_0 + \lambda_0 a_1) = 0$.

$$\lambda^* := \sup\{\lambda \mid \mu_{\rho}(\mathcal{K}_{\Omega} + a_0 + \lambda a_1) = 0\}.$$

- Case $\mu_{\rho}(\mathcal{K}_{\Omega \setminus \Omega_0} + a_0) > 0.$
 - For λ << −1 then μ_ρ(K_Ω + a₀ + λa₁) > 0. More precisely,

 $\liminf_{\lambda\to -\infty} \mu_{\rho}(\mathcal{K}_{\Omega} + a_0 + \lambda a_1) > 0.$

Perspectives and future work

Conclusion

- We provide an simple heterogeneous dispersal process which takes into account both the starting point and the end point of the jumps
- We also provide a promising possible way to evaluate agricultural strategies on non targeted species which already have given some insight on the structure of the population.

future Work

- Better understanding of the heterogeneous dispersal process in unbounded domain
- Other distance/more general framework?
- Remove the constraint on ω on the refuge dynamics
- Have a better understanding of λ^* , λ^{**} with respect to a_1 . Optimisation
- Incorporate seasonality by introducing time dependant coefficient
- Unbounded death rates?

Thank you for your attention