Estimation de la fonction de dispersion du Plum pox virus par les pucerons vecteurs

François Bonnot, Mathilde Lefort, Sylvie Dallot, Gaël Thébaud, Emmanuel Jacquot

La sharka, une des maladies les plus graves des fruits à noyaux

- Plum pox virus (PPV- genre Potyvirus)
- Hôtes : *Prunus c*ultivés (abricotier, pêcher, prunier) et sauvages
 - Baisse du rendement et de la qualité des fruits
 - Coût des mesures de contrôle de la maladie
- Deux modes de dissémination du virus
 - Propagation de matériel végétal contaminé et échanges commerciaux
 - Par les pucerons sur le mode non persistant
 - Au moins 20 espèces de pucerons (qui ne colonisent pas les *Prunus*)
 - Processus d'acquisition-transmission rapide
 - Les arbres deviennent infectieux après une période de latence de distribution mal connue
 Réseau ModStatSP – Décembre 2013

Distances de dispersion de la sharka

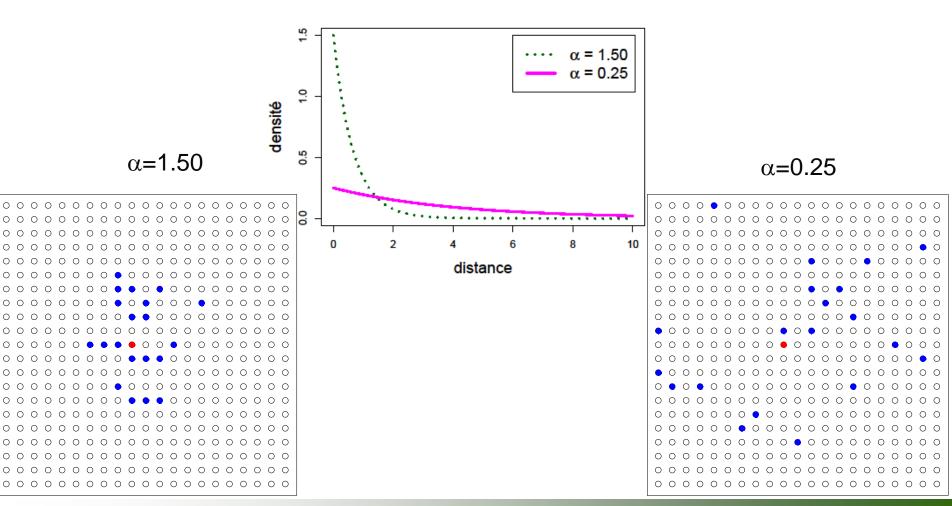
- En France, lutte obligatoire contre la maladie dans les vergers :
 - Prospections visuelles pour identifier les arbres symptomatiques
 - Arrachage des arbres symptomatiques

- Une bonne connaissance des distances de dispersion par les pucerons est nécessaire pour optimiser les stratégies de surveillance et de contrôle.
 - Analyses préliminaires basées sur la distribution spatiotemporelle des arbres malades dans les vergers (Dallot et al., 2003 and 2004).

Modélisation spatiotemporelle stochastique

Fonction de dispersion

Densité f(d) décrivant la probabilité qu'un arbre infectieux contamine un arbre sain situé à distance d



Objectifs

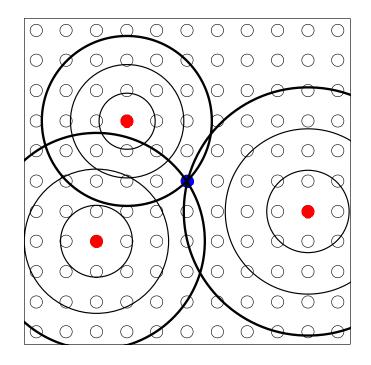
- Implémenter une méthode d'estimation de α à partir de cartes d'une maladie observée à différentes dates (Gibson 1997)
- Tester la méthode existante
- Comparer avec une variante de l'algorithme
- Adapter la méthode d'estimation
 - aux spécificités du pathosystème sharka et des mesures de contrôle
 - aux spécificités du jeu de données disponible

Données épidémiologiques sur le PPV

- 157 parcelles de pêcher, 1000 arbres par parcelle
- Environment sain
- Detection et arrachage des arbres symptomatiques chaque année pendant 6 années consécutives

Cadre méthodologique

- Les arbres infectieux exercent un potentiel infectieux sur les arbres sains.
- Ce potentiel infectieux est défini comme la somme des fonctions de dispersion des arbres infectieux.
- Un arbre sain est infecté avec une probabilité proportionnelle au potentiel infectieux.
- Un arbre infecté devient immédiatement infectieux.

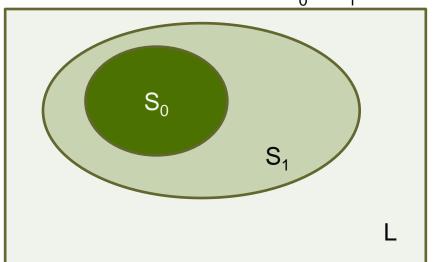


$$P(x \text{ devient infect\'e pendant } [t, t + \Delta t]) = k(t) \sum_{y \text{ infectieux}} f_{\alpha}(|y - x|) \Delta t$$

Potentiel infectieux en x

Cadre méthodologique

2 dates d'observation t₀ et t₁



L = ensemble des arbres de la parcelle

 S_0 = arbres infectieux au temps t_0

 S_1 = arbres infectieux au temps t_1

 $S_1 \setminus S_0$ = nouveaux arbres infectés entre t_0 et t_1

 $L\ S_1$ = arbres restés sains au temps t_1

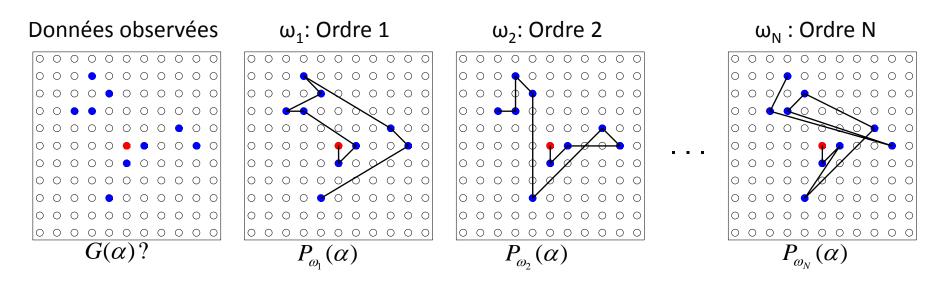
L'estimation de α est basée sur la probabilité de l'évènement :

E = Tous les arbres de $S_1 \ S_0$ deviennent infectieux avant tous les arbres de $L \ S_1 \$ »

Vraisemblance de α : $G(\alpha) = P(E|\alpha)$

Calcul de $G(\alpha)$

$$G(\alpha) = P(E|\alpha) = P[t_{\alpha}(x) < t_{\alpha}(y), \forall x \in S_1 \setminus S_0, \forall y \in L \setminus S_1]$$
 $t_{\alpha}(x) = \text{date d'infection de } x$



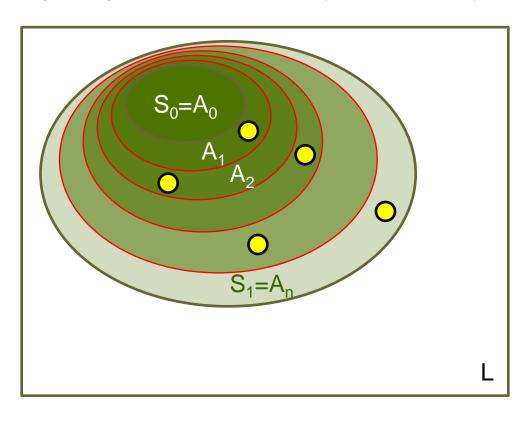
$$G(\alpha) = \sum_{\omega} P_{\omega}(\alpha)$$

Propriété: $G(\alpha)$ ne dépend pas de k(t)

Calcul de $P_{\omega}(\alpha)$

$$S_0 = A_0 \longrightarrow A_1 \longrightarrow \ldots \longrightarrow A_i \longrightarrow \ldots \longrightarrow A_n = S_1 \qquad A_{i+1} = A_i \cup \{x_{i+1}\}$$

$$A_{i+1} = A_i \cup \{x_{i+1}\}$$



$$P_{\omega}(\alpha) = \prod_{i=0}^{n-1} P(A_i \to A_{i+1} | \alpha)$$

$$P(A_i \to A_{i+1} | \alpha) = \frac{C(x_{i+1} | A_i)}{\sum_{y \in L \setminus A_i} C(y | A_i)}$$

$$C(x|A) = \sum_{y \in A} f_{\alpha}(|y - x|)$$

Potentiel infectieux exercé par A sur x

 $G(\alpha) = \sum_{\omega} P_{\omega}(\alpha)$ non calculable numériquement (somme de n! termes)

Utilisation de méthodes de Monte Carlo

1) Tirage aléatoire des ordres (Gibson 1997)

Si l'ordre ω est tiré avec la probabilité $g(\omega)$: $E\left[\frac{P_{\omega}(\alpha)}{g(\omega)}\right] = G(\alpha)$

La moyenne de m termes $\frac{P_{\omega}(\alpha)}{g(\omega)}$ obtenus par tirages équiprobables de ω

$$\left(g(\omega) = \frac{1}{n!}\right)$$
 est donc un estimateur de $G(\alpha)$.

Mais variance importante si transmission à courte distance (Gibson)

2) Méthode MCMC 1 (Gibson 1997)

Si la distribution *a priori* de
$$\alpha$$
 est uniforme : $P(\alpha|E) = \sum_{\omega} P(\alpha, \omega|E) \propto G(\alpha)$

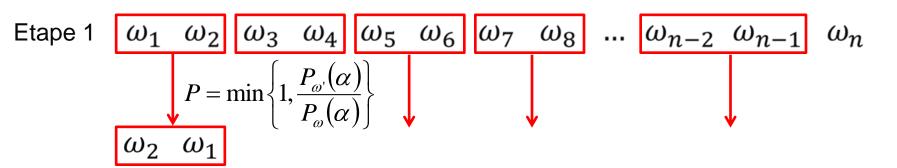
Démarche : construire une chaîne de Markov $(\alpha_1,\omega_1),(\alpha_2,\omega_2),...,(\alpha_m,\omega_m)$ dont la distribution stationnaire est $P(\alpha,\omega|E)$

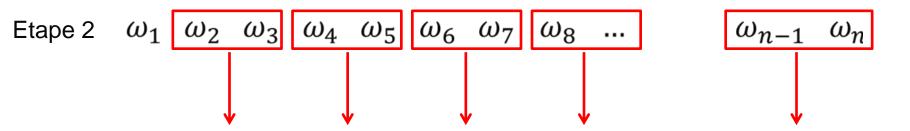
$$\hat{P}(\alpha|E) = \frac{1}{m} \sum_{i=1}^{m} P(\alpha|\omega_i, E) \quad \text{permet d'estimer } \alpha$$

Méthode MCMC 1 : Construction de la chaîne de Markov

Obtention de $(\alpha_{i+1}, \omega_{i+1})$ à partir de (α_i, ω_i)

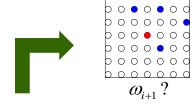
- Tirage de α_{i+1} dans $P(\alpha | \omega_i, E)$
- Obtention de ω_{i+1} à partir de ω_i au moyen d'un processus de « mutation » :

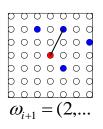


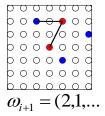


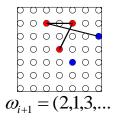
3) Méthode MCMC 2 : Echantillonneur de Gibbs

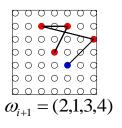
- Construction d'une chaîne de Markov $(\alpha_1, \omega_1), (\alpha_2, \omega_2), ..., (\alpha_m, \omega_m)$:
 - Itération 1 : α_1 fixé
 - Itération i : Tirage de l'ordre ω_{i+1} dans la distribution $P(\omega|\alpha_i)$



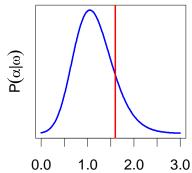








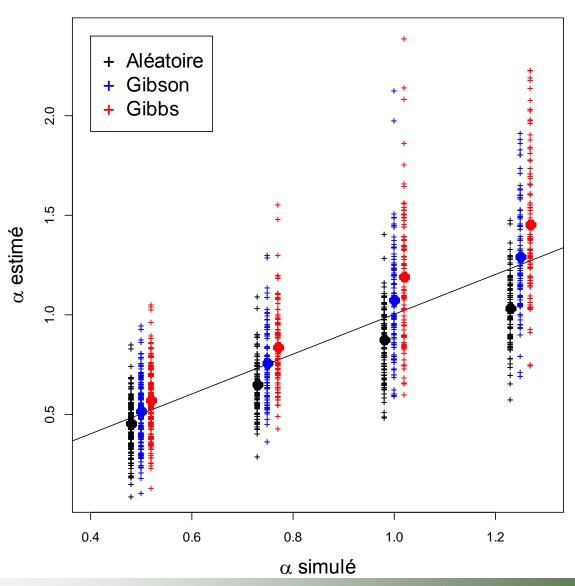
$$\alpha_{i+1}$$



Tirage de
$$\, lpha_{i+1} \,$$
 dans la distribution $\, P(lpha | \omega_{i+1}) \,$

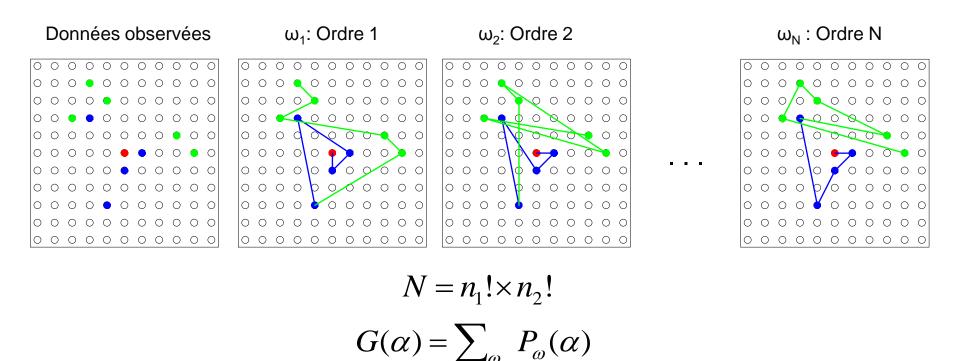
$$P(\alpha | \omega_{i+1})$$

Comparaison des 3 méthodes d'estimation de α



Extension à plus de deux dates d'observation

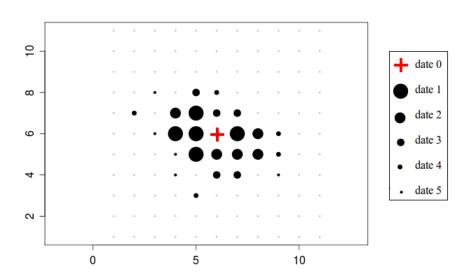
• Seuls les ordres compatibles avec les cartes successives sont considérés



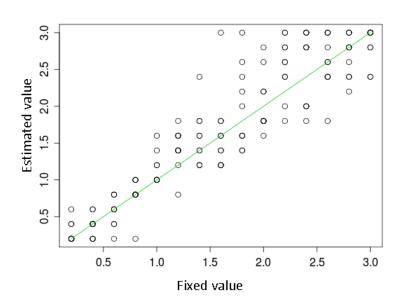
• Construction de la chaîne de Markov $(\alpha_1, \omega_1), (\alpha_2, \omega_2), ..., (\alpha_N, \omega_N)$

Extension à plus de deux dates d'observation

Données simulées avec α fixé



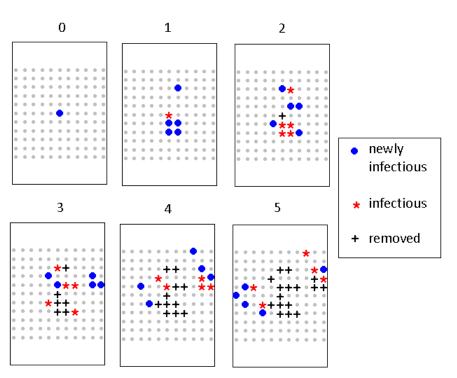
76% des estimations diffèrent de moins de 0.4 unités des valeurs fixées



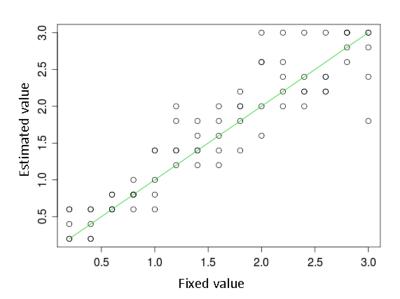
Prise en compte de l'arrachage des arbres

• Les ordres sont conditionnés à l'ensemble des arbres restants

Données simulées avec α fixé

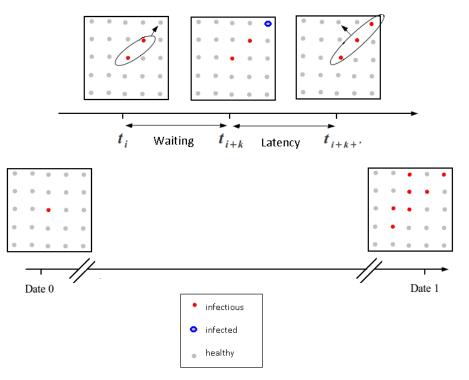


85% des estimations diffèrent de moins de 0.4 unités des valeurs fixées

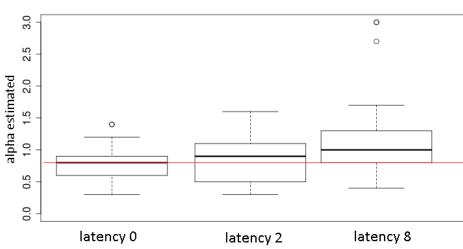


Effet de la latence

Simulation d'un nouvel arbre infecté

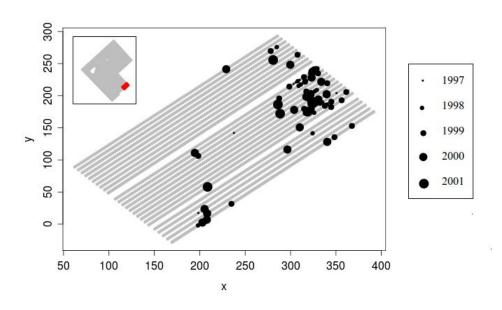


Le biais de l'estimation croît avec la latence

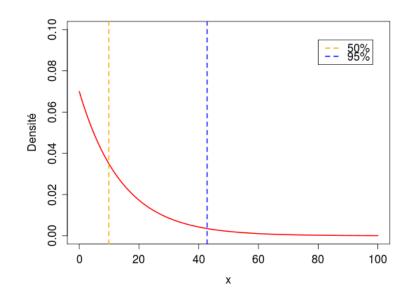


$$\alpha = 0.8$$

Application aux données réelles



50% des évènements de dispersion se produisent à moins de 10 m de la source et 95% à moins de 43 m



Conclusions

- Développement d'une méthode d'estimation de la foncton de dispersion de la sharka adaptée :
 - aux gros jeux de données
 - aux données observées à plusieurs dates
 - aux données incluant des arbres arrachés
- La latence biaise l'estimation

Perspectives

- Affiner la méthode :
 - Améliorer la procédure d'estimation
 - Poursuivre l'analyse de l'influence de la latence
 - Intégrer la probabilité de non-détection
 - Appliquer la méthode au jeu de données