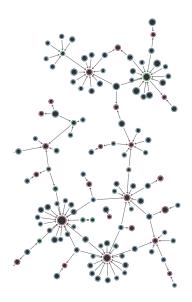


Modeling of the spread and control of *Mycobacterium avium* subsp. *paratuberculosis* in a metapopulation of dairy cattle herds

ModStatSAP - December 11, 2014

Gael Beaunée^{1,2}, Elisabeta Vergu¹ & Pauline Ezanno²

¹INRA, UR341 MIA, 78350 Jouy-en-Josas, France ²INRA, ONIRIS, LUNAM, UMR1300 BioEpAR, 44307 Nantes, France



Introduction	Paratuberculosis		
M			

Motivations

- Movements of livestock form complex dynamic networks linking farms
- Many important cattle diseases spread between herds through these movements
- ► Paratuberculosis → introduced into farms by purchasing infected stock

Introduction	Paratuberculosis					
Objectives						

- Study the spread of paratuberculosis in a metapopulation of dairy herds
 - build a modelling framework coupling realistic intra-herd demographic and infection dynamics and inter-herd connexions
 - ▶ integrate data on annual movements (for a French region)

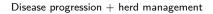
 Assess the efficacy of control strategies based on the management of animal movements between herds

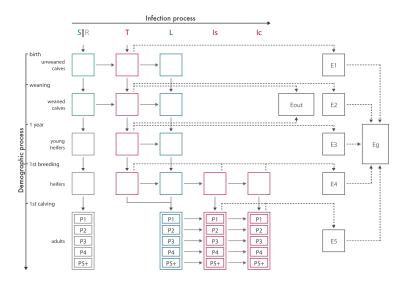
Paratuberculosis / Johne's disease

- Chronic enteritis (bowel inflammation)
- Mycobacterium avium subsp. paratuberculosis (Map)
- Two types of transmission
 - ▶ vertical (*in-utero*)
 - horizontal (colostrum, milk, feces)
- Clinical signs
 - chronic diarrhea
 - severe weight loss and weakness
 - decline in milk production
- Significant economic impact

Within dairy herd model (1) : main assumptions

Coupling population dynamics in a dairy herd explicitly defined with Map transmission


- Seasonality (housing vs. grazing)
- ▶ 5 routes of transmission :
 - in utero, colstrum, milk, local environnement (calf-to-calf), global environnement
- Infection occurs before $\mathbf{1}$ year only
- Heterogeneity of shedding
- Survival of *Map* in the environment


Within dairy herd model (2) : health states

- S Susceptible
- T & Is Infected asymptomatic, shedders
- L Infected asymptomatic, non-shedders
- Ic Infected symptomatic, shedders
- R Resistant

 $\begin{array}{ccc} {\sf Resistant} \ \leftarrow \ {\sf Susceptible} \ \rightarrow \ \overset{{\sf Transiently}}{{\sf infectious}} \ \rightarrow \ \overset{{\sf Latent}}{{\sf stage}} \ \rightarrow \ \overset{{\sf Subclinically}}{{\sf infectious}} \ \overset{{\sf Clinically}}{{\sf affected}} \\ {\sf R} \qquad \begin{array}{cccc} {\sf S} & {\sf T} & {\sf L} & {\sf Is} & {\sf Ic} \end{array} \end{array}$

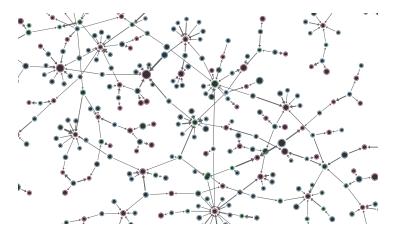
Within dairy herd model (3)

Within dairy herd model (4) : mathematical framework

- Semi-Markov stochastic compartmental model on discrete space and in discrete time
 - ► 63 parameters & 495 state variables (age structure)

Examples of transitions :

► Stochastic $S_{(t,a)} \longrightarrow T_{(t,a)} \sim Bin\left(S_{(t,a)}; P_{inf(t,a)}^{global}\right)$


 $P_{inf(t,a)}^{global}$ the probability of infection through the global routes depending on *a* (age), *t* (time) and E^g (global environment) :

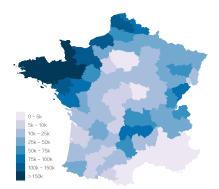
$$P_{inf(t,a)}^{global} = 1 - exp\left(-exp[-h(a-1)].\frac{\beta_g E_{(t)}^g}{\alpha N_{(t)}^g}\right) \quad ; \quad E_{(t)}^g = \sum_{i=1}^{i=5} E_{i(t)}^i$$

Deterministic

 $S \longrightarrow R$ when age = 1 year

Between-herd model

Coupling of within-herd dynamics through animal trade movements, based on real data.


Animal movements data (1)

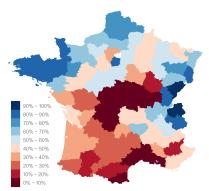
- ► French cattle identification database (2005-2009)
 - ► Contains all the movements of all cattle
 - ► Includes data from farms, markets and assembly centers
- Informations
 - ► ID of animals exchanged
 - ID and type of holdings
 - type and age of animals
 - date of movements
- ► Here : subset of the whole network → all the dairy farms exchanging females in Brittany (region in Northwestern France)

Animal movements data (2)

Motivation for Brittany data :

- High density of dairy cattle herds
- Longitudinal epidemiological data on *Map* available for future validation of the model

Number of dairy animals


 \Rightarrow Rebuild a version of the network without markets (M) and assembly centers (AC) motivated by :

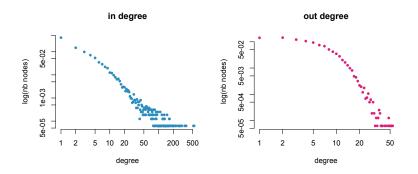
- \blacktriangleright short duration of stay in M/AC
- ► low risk of infection in M/AC

Animal movements data (2)

Motivation for Brittany data :

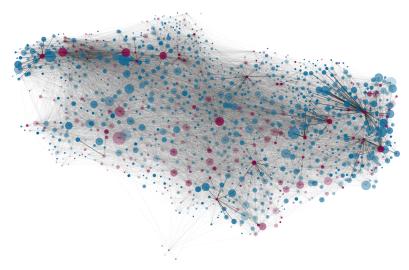
- High density of dairy cattle herds
- Longitudinal epidemiological data on *Map* available for future validation of the model

Proportion of dairy animals


 \Rightarrow Rebuild a version of the network without markets (M) and assembly centers (AC) motivated by :

- \blacktriangleright short duration of stay in M/AC
- ► low risk of infection in M/AC

Network of dairy herds in Brittany (2005-2009)


Number of active farms (nodes) : 16076

Number of movements (links) : $680\ 929$ including $150\ 568$ within the metapop.

Age of animals exchanged : mostly calves (<10 weeks, 32.7%) and adult (> 2.5 years, 53.8%)

Network of dairy herds in Brittany (2005-2009)

Network aggregated by communes : red - rather buyer, blue - rather seller, size weighted by the number of animals, link weighted by the number of exchanges

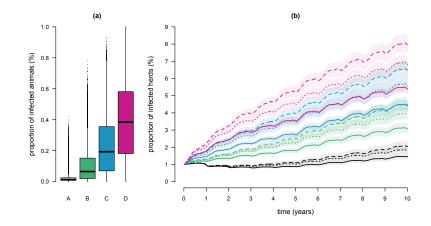
Between-herd model

Coupling of stochastic within-herd dynamics through trade movements

Observed movements are explicitely modeled

- $\blacktriangleright\,$ date, origin, destination and age of the animal \rightarrow deterministic
- ► animal health status → stochastic (selected according to the herd specific prevalence)

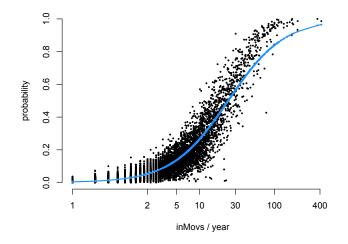
Assign the animal health status for each movement from herd i to herd j:


$$\begin{split} X_{i \to j}^{a} &= \textit{Multinomial}\left(N_{i \neq lc}^{a}, p_{i}^{a}\right) \\ p_{i}^{a} &= \left(p_{i}^{a,S/R}, p_{i}^{a,T}, p_{i}^{a,L}, p_{i}^{a,ls}\right) \textit{ with } \sum_{X \in (S/R, T, L, ls)} p_{i}^{a,X} = 1 \end{split}$$

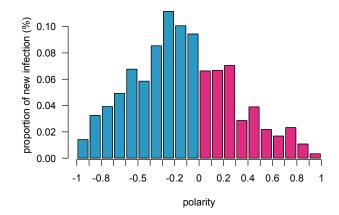
Animals Ic are not allowed to move

Simulation settings

- ► Number of runs per scenario : 1000
- Parameters chosen according to the litterature and expert knowledge
- ▶ Number of initially infected herds : 1% with one *Is* heifer
- Outputs : nb of infected herds, probability of infection, type of herd at risk for propagation
- ► Scenarios :
 - Different intra-herd prevalence at the start of between-herd dynamics
 - ► Different way to choose initially infected herds (at random)
 - uniformely
 - based on out-degree distribution
 - based on out-flow distribution



Proportion of infected herds over time



Between-herd model : results of simulations (2)

Probability of having been infected at least once

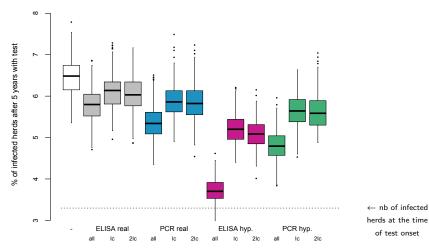
Risk of spreading infection by initially uninfected herds

Test of animals status at purchase : settings

Accounting for the characteristics of the test of animals status, sensitivity (Se) and specificity (Sp) :

Scenarios		Se for T	Se for L	Se for <i>Is</i>	Sp
Without test		-	-	-	-
ELISA	real	0.15	0.07	0.75	0.95
	hyp.	0.9	0.9	0.9	0.95
PCR	real	0.57	0	0.75	0.95
	hyp.	0.9	0	0.9	0.95

for S or $R \Rightarrow Bernoulli(Sp)$; for T, L or $Is \Rightarrow Bernoulli(Se)$


Targeted movements : 3 procedures

- all animals exchanged tested
- ▶ only movements from herds with at least one *lc* at movement time
- only movements from herds with at least two *lc* found in the past

Tests implemented after 5 years of infection spread and performed during 5 years

Test of animals status at purchase : results

Number of infected herds 5 years after the onset of the test at purchase

Conclusion and perspectives

- Generic modelling framework for infection dynamics in a metapopulation of cattle herds connected by animal movements
- Herds are not all equal and limited efficiency for strategies involving tests at purchase

- Assess combinations of measures (movements + internal biosecurity)
- Use of animal movement data for a larger period
- ► Use of epidemiological data for validation / estimation

Thanks !

