
Introduction Logistic case Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Dynamique de la structure génétique spatiale au
cours d’une invasion

Lionel Roques

with T. Boivin, O. Bonnefon, J. Coville, J. Garnier, T. Giletti,
F. Hamel, Y. Hosono and E. Klein

Réunion annuelle du réseau ModStatSAP - 2014

INRA Biostatistics and Spatial Processes (BioSP) – Avignon – France

& Processus Spatiaux

Biostatistique



Introduction Logistic case Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Introduction



Introduction Logistic case Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Modèles d’EDP en écologie des populations, idée générale

Description de la dynamique d’une population sous l’effet de deux forces :

la dispersion et la croissance (naissances-décès).

Modalités de dispersion :
- locale : diffusion ;
- non locale : modèles à
noyaux.

Modalités de croissance :
- logistique :
densité-dépendance due à la
compétition intra/inter ;

- effet Allee : coopération
entre indiv. ;

- effets retards : phase
juvénile.
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Reaction-dispersion models: general form

General form (1D):

∂tu(t, x) = D[u](t, x) + F [u](t, x), t > 0, x ∈ R.

Description of the dynamics of a concentration u(t, x) under the effect
of:

• a linear dispersion term D[u](t, x);

• a growth term (reaction) F [u](t, x);
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Traveling wave solutions

Solutions with constant speed c and a constant profile U > 0 :

u(t, x) = U(x − c t).

Usual questions: existence, uniqueness, stability, minimal speed ...

New problem: to study the inside dynamics of U(x − c t).
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Inside dynamics of a solution: main idea
Assumption: u is made of several components µi ≥ 0 (i ∈ I ⊂ N):

u(0, x) =
∑
i∈I

µi(0, x).

Interpretation: u is a density of genes inside a population.

Neutrality assumption: dispersion and growth abilities are the same in
all the µi ’s. ∂tµ

i(t, x) = D[µi ](t, x) + µi

u F [u](t, x), t > 0, x ∈ R,

µi(0, x) = µi
0(x), x ∈ R.

Well-posedness: we can check that

u(t, x) =
∑
i∈I

µi(t, x) for all t ≥ 0, x ∈ R.
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Pulled and pushed waves: new definitions (2012)
Definition (Pulled wave)
u(t, x) = U(x − ct) is a pulled wave if, for any component µ such that
µ0(x) = 0 for large x ,

µ(t, x + ct)→ 0 as t → +∞, uniformly on compact sets.

→ Only the furthest forward component can follow the wave.

Definition (Pushed wave)
u(t, x) = U(x − ct) is a pushed wave if, for any component µ such that
µ0 6≡ 0, there exists M > 0 such that

lim sup
t→+∞

sup
x∈[−M,M]

µ(t, x + ct) > 0.

→ All of the components are maintained in the wave.

First mathematical definitions of pulled/pushed waves: Stokes (1976).
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Application 1: logistic growth
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Traveling waves – logistic case

• Equation: ∂tu = d ∂xx u + f (u).

• Growth term: f (u) = u (1− u) (or other logistic – KPP growth
terms). fig

• Interpretation: per capita growth rate is maximal at low density
(competition effects).

• Traveling waves: u(t, x) = Uc(x − c t) for all c ≥ c∗ = 2
√

f ′(0) d
(Fisher, 1937; Kolmogorov et al, 1937)
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Inside dynamics the waves (logistic case)

Theorem 20121
All of the waves are pulled.

Funder effects → strong erosion of diversity.

1Roques et al., PNAS 2012; Giletti et al., J Math Pures Appl, 2012
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Application 2: bistable growth terms – strong Allee effect
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Bistable waves : strong Allee effect

• Equation: ∂tu = d ∂xx u + f (u).

• Growth term: f (u) = u (1− u) (u − ρ), ρ ∈ (0, 1/2) (or other
bistable growth terms). fig

• Interpretation: strong Allee effect=negative growth rate at low
densities.

• Traveling wave: unique wave u(t, x) = Uc∗(x − c∗ t) (Aronson and
Weinberger, 1975; Fife and McLeod, 1977).
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Inside dynamics of bistable waves

Theorem 20122
The unique wave is pushed.

Convergence to a positive proportion of the wave:

µ(t, x + c∗ t)→ p U(x) as t → +∞, uniformly on compact sets,

with

p = p[µ0] =

∫ +∞

−∞
µ0(x) U(x) e c∗

d x dx∫ +∞

−∞
U2(x) e c∗

d x dx
∈ (0, 1].

2Roques et al., PNAS 2012; Giletti et al., J Math Pures Appl, 2012
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Inside dynamics of bistable waves

Theorem 20122
The unique wave is pushed.

Higher mortality at low densities → maintenance of diversity.

2Roques et al., PNAS 2012; Giletti et al., J Math Pures Appl, 2012
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Typical pulled and pushed profiles

Pulled profile Pushed profile
Diversity is lost Diversity is maintained
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Application 3: Lotka-Volterra competition models
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Traveling wave of LV competition systems

• Equation:{
∂t u = d ∂xx u + u (1− u − a1v),
∂t v = ∂xx v + r v (1− a2 u − v), t > 0, x ∈ R,

d , r , a1, a2 are positive and 0 < a1 < 1 < a2.

• Growth term: logistic-type (pure logistic if a1 = 0).

• Traveling waves: u(t, x) = U(x − c t), v(t, x) = V (x − c t), with
limiting conditions:

(U,V )(−∞) = (1, 0) and (U,V )(+∞) = (0, 1).

Existence for all c ≥ c∗ > 0 (Kan-On, 1997).
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Linear and nonlinear determinacy of the minimal speed

Comparison principle:

2
√

d(1− a1) ≤ c∗ ≤ 2
√

d .

• c∗ is linearly determined if c∗ = c0 := 2
√

d (1− a1);

or
• nonlinearly determined if c∗ > c0 := 2

√
d (1− a1).

Natural conjecture: c∗ is always linearly determined (Okubo et al., 1989,
Murray, 2002).
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Linear and nonlinear determinacy of the minimal speed
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Existence of nonlinear waves: a1 → 1 (Huang and Han, 2011), d << 1
(Holzer and Scheel, 2012).

3Roques et al., J Math Biol 2014
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Inside dynamics of LV linear waves

Theorem 20144
If c∗ is linearly determined, the wave u(t, x) = U(x − c∗ t) is pulled.

0
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(b) a1 = 0.4, d = 1, t = 80

Weak competitor (a1 << 1)→ erosion of diversity as in the scalar KPP
case.

4Roques et al., J Math Biol 2014
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Inside dynamics of LV nonlinear waves

Theorem + conjecture 5

If c∗ is linearly determined, the wave u(t, x) = U(x − c∗ t) is pushed.
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(c) a1 = 0.9, d = 1, t = 0
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(d) a1 = 0.9, d = 1, t = 175

Strong competitor → maintenance of diversity.

5Roques et al., J Math Biol 2014
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Application 4: delayed reaction-diffusion equations
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Traveling waves in delayed PDEs

• Equation: ∂tu = d ∂xx u + F [u].

• Growth term: F (u(t − τ, x), u(t, x)) = u(t − τ, x) (1− u(t, x)).

• Interpretation: non-reproductive and motionless juvenile stage.

• Traveling waves: u(t, x) = Uc(x − c t) for all c ≥ c∗(τ) (Schaaf,
1987)
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Inside dynamics of delayed waves

Theorem 20136
All of the waves are pulled, although there exist some fast decay waves!

→ Same large-time dynamics as in the non-delayed case. Numerical
simulations show a “transient pushed stage".

6Bonnefon et al., Math Mod Nat Pheno, 2013
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Application 5: integro-differential equations
The effect of long-distance dispersion
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Traveling waves and other solutions
• Equation: ∂tu = D[u] + f (u).

• Growth term: KPP or monostable (e.g. f (u) = u (1− u)).

• Dispersion term: D[u] : nonlocal linear operator

D[u] = D[u](t, x) =
∫
R

J(|x − y |) (u(t, y)− u(t, x)) dy .

Dispersion kernel J(λ) : probability to move at a distance λ.
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Traveling waves and other solutions
• Equation: ∂tu = D[u] + f (u).

• Growth term: KPP or monostable (e.g. f (u) = u (1− u)).

• Dispersion term: D[u] : nonlocal linear operator

D[u] = D[u](t, x) =
∫
R

J(|x − y |) (u(t, y)− u(t, x)) dy .

Dispersion kernel J(λ) : probability to move at a distance λ.

Thin-tailed dispersion kernel: local dispersion → TW with constant speeds
(Carr and Chmaj, 2004; Coville and Dupaigne, 2007)
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Traveling waves and other solutions
• Equation: ∂tu = D[u] + f (u).

• Growth term: KPP or monostable (e.g. f (u) = u (1− u)).

• Dispersion term: D[u] : nonlocal linear operator

D[u] = D[u](t, x) =
∫
R

J(|x − y |) (u(t, y)− u(t, x)) dy .

Dispersion kernel J(λ) : probability to move at a distance λ.

Fat-tailed dispersion kernel: long-distance dispersion → acceleration
(Garnier, 2011) and flattening (in preparation).
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Thin-tailed kernels: inside dynamics

Theorem 2014 7

If J is a thin-tailed kernel and f is of KPP type, all of the waves are
pulled

x

u
(t
,x
)

x

u
(t
,x
)

Figure: TW solution in the case of the thin-tailed kernel J(x) = (1/2) e−|x|, at
t = 0 (left) and t = 40

→ same dynamics as in the diffusion case.
7Bonnefon et al., DCDS B, 2014



Introduction Logistic case Bistable waves Lotka-Volterra Delayed PDEs Integro-differential equations Conclusions

Inside dynamics for very fat kernels

Consider the Cauchy kernel:

J(x) = β

π(β2 + x2) for some β > 0,

and a monostable function f .

Theorem 20148
The solutions are pushed:

µ(t, x)
u(t, x) ≥ α > 0 for all t ≥ τ and x ∈ R.

8Bonnefon et al., DCDS B, 2014
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Inside dynamics for very fat kernels

Figure: Solution starting from a step-function with β = 1, at t = 0 (left) and
t = 6 (right).

Long-distance dispersion → better maintenance of diversity.
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Conclusions

Ecological consequences:
Mechanisms which usually have adverse consequences can lead to a
better maintenance of diversity:

• Allee effect (lower or negative growth rate at low densities);
• competition with a resident species;
• climatic constraints (Pluess, 2011, Garnier and Lewis, 2014).

Next steps:
• check our results experimentally (collaboration with L Mailleret and
E Vercken - demande thèse SPE);

• effect of density-dependent dispersal;
• include some feedback of diversity on population dynamics;
• estimate demographic parameters, based on genetic data (Emily’s
talk).
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Thank you!
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