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 The sustainable management of plant disease has two 
distinct but interdependent goals:

 Immediate epidemiological  reducing severity and 
frequency of disease epidemics

 Longer-term evolutionary  reducing the rate of 
evolution of new patho-types (i.e. preserving the 
efficiency of disease resistance genes)

 Here, we model epidemiological and evolutionary dynamics
of spore-producing pathogens in a host population.

 The host population did not represent individual plants, 
but rather leaf area densities (leaf surface area per m2).

Zhan J. et al., Annu Rev Phytopatol (2015)
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Model equations (Host homogeneity)



Evolutionary Attractor (EA)
The EAs are characterized by the following fitness function:

Ψ 𝑥 :=
𝛽(𝑥)

𝛿
 
0

∞

𝑟(𝑎, 𝑥) 𝑒−𝜇𝑎d𝑎

The  phenotype  𝑥∗ is EA if 𝑥∗ maximize Ψ

Infection efficiency
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MAX𝑥 Ψ 𝑥 = Ψ 𝑥1 = Ψ(𝑥2)
two EAs

𝑥1; 𝑥2

Which EA will asymptotically persist?:

Globally Stable Evolutionary Attractor 
(GSEA)



MAX𝑥 Ψ 𝑥 = Ψ 𝑥1 = Ψ(𝑥2)
two EAs

𝑥1; 𝑥2

Metastable behavior. 

Before the system concentrates around the 

GSEA 𝑥2, it persists on the EA 𝑥1 for a 

relatively long time interval, whose size 
depends on 𝜀 and diverges to +∞ as 𝜀 → 0.



Host heterogeneity

 Context: Two cultivars: 

Objectives: 
 Reducing the severity of disease epidemics.

 Preserving the efficiency of disease R genes.

sensitive (S) quantitative resistant (R)



Host heterogeneity

S envir. ↪ Ψ𝑆 ≔ 𝐺 𝑚1, 𝜎

R envir. ↪ Ψ𝑅 ≔ 𝐺 𝑚2, 𝜎

Each environment induced a specific fitness function:

The fitness function of S and R envir.:

S + R envir. ↪ Ψ ≔ 𝑃𝑆Ψ𝑆 + (1 − 𝑃𝑆)Ψ𝑅
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Some technical materials





∂tS(t) = Λ− µS(t)− S(t)

∫

RN
β(y)A(t, y)dy

(∂t + ∂a) i(t, a, x) = −µi(t, a, x),

i(t, 0, x) = β(x)S(t)A(t, x),

∂tA(t, x) =

∫

RN

∫ ∞

0
J(x− y)r(a, y)i(t, a, y)dady − δA(t, x).

S(t = 0) ∈ R+,

i(t = 0, ., .) ∈ L1
+

(
(0,∞)× RN

)

A(t = 0, .) ∈ L1
+

(
RN
)
.



A unique non-trivial stationary state...

Observe that (S∗, i∗, A∗) ∈ (0,∞)×L1
+

(
(0,∞)× RN

)
×L1

+(RN )
is a stationary state of the model iff





L[A∗](x) =
1

S∗
A∗(x),

Λ− µS∗ = S∗
∫

RN
β(y)A∗(y)dy and i∗(a, x) = β(x)S∗A∗(x)e−µa.

with

L[u](x) :=

∫

RN
J(x− y)Ψ(y)u(y)dy

and

Ψ(x) =
β(x)

δ

∫ ∞

0
r(a, x)e−µada.( fitness function)

Therefore the study of the stationary state of the model strongly
relies on the spectral properties of L.



Model assumptions
Assumption 1 (Fitness function):

I The fitness function Ψ : RN → R+ is assumed to be
continuous on RN and lim‖x‖→∞Ψ(x) = 0.

I There exists a finite number of points {x1, .., xM} ⊂ RN ;

{
x ∈ RN : Ψ(x) = ‖Ψ‖∞

}
= {x1, .., xM} ,

and ∀k, the Hessian −D2Ψ (xk) is positive definite.

Assumption 2 (Mutation kernel):

I J is non-negative, J(−x) = J(x) and
∫
RN J(x)dx = 1.

I There exist some constants M0 > 0, η0 > 0 and γ0 ∈ (0, 1)
such that

J(x) ≤M0 exp (−η0‖x‖γ0) , a.e. x ∈ RN .

(J decays faster without being a thin-tailed kernel)

I The covariance matrix Σ[J ] of the probability measure
J(x)dx is positive definite.
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A unique non-trivial stationary state...

Theorem
Let Assumption 1 and 2 be satisfied. Define the number T0 by

T0 =
Λ

µ
sup

ϕ∈L2(RN )
‖ϕ‖

L2(RN )
=1

∫∫

RN×RN
Ψ

1
2 (x)Ψ

1
2 (y)J(x−y)ϕ(x)ϕ(y)dxdy.

I When T0 ≤ 1, then the model has a unique equilibrium point(
S0, i0, A0

)
:=
(

Λ
µ , 0, 0

)
.

I When T0 > 1, then the model has two different equilibrium
points

(
S0, i0, A0

)
and (S∗, i∗, A∗):

0 < S∗ < S0, A∗ ∈ L1(RN ) ∩ L∞(RN ) with A∗ > 0 a.e.,

and i∗(a, x) = β(x)S∗A∗(x)e−µa.
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Next...
[Reed M., Simon B.(1979). Helffer B., Sjöstrand J.(1984). Klein M., Rosenberger E.
(2008)]

We now assume that the mutation kernel J depends upon a small
parameter 0 < ε << 1 and takes the form

Jε(x) := ε−NJ
(x
ε

)
, ∀x ∈ RN .

We aim at describing the behaviour of the endemic equilibrium
point (S∗ε , i

∗
ε, A

∗
ε) of the model as ε→ 0.

A∗ε arises as the principle eigenvector of the linear operator

Lε[u](x) := Ψ
1
2 (x)

∫

RN
Jε(x− y)Ψ

1
2 (y)u(y)dy.



Next...
[Reed M., Simon B.(1979). Helffer B., Sjöstrand J.(1984). Klein M., Rosenberger E.
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Asymptotic expansion of the principal eigenvalue of Lε...

Problem (*): Lεψε(x) = λεψε(x), on L1(RN ) ∩ L∞(RN ).

∀xj ∈ {x1, .., xM} :=
{
x ∈ RN : Ψ(x) = ‖Ψ‖∞

}
; find a formal

solution of (*) of the form

ψεj (x) :=
∞∑

k=0

ε
k
2ϕk,j

(
x− xj
ε

1
2

)
and λεj := ‖Ψ‖∞

(
1 +

∞∑

k=0

ε1+ k
2λk,j

)
,

where {ϕk,j}k≥0 ⊂ L2(RN ) and {λk,j}k≥0 ⊂ R are determined by
using:

I a recurrence relation,

I the elliptic operator Pj := −∆+‖
(
−D2Ψ(xj)

) 1
2 x‖.

Note that

ϕ0,j(x) = (2π)−
N
2

√
det(Aj) exp

(
−‖Ajx‖

2

2

)
and λ0,j = −tr(Aj).
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Asymptotic expansion of the principal eigenvalue of Lε...
Order relation in the set of maximum points: {x1, .., xM} := {x : Ψ(x) = ‖Ψ‖∞} ;

I Define the order E on the set {1, ..,M}:

i E j ⇔ {λk,i}k≥0 � {λk,j}k≥0 .

I Consider the set M⊂ {1, ..,M} defined by

M = max ({1, ..,M},E) .

I If i 6= j belongs to M then λk,i = λk,j for all k ≥ 0.

I In the case N = 1:

i, j ∈M⇐⇒ (Ψ)(n) (xj) = (Ψ)(n) (xi) , ∀n ∈ N.
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Asymptotic expansion of the principal eigenvalue of Lε...

Lε[u](x) := Ψ
1
2 (x)

∫

RN
Jε(x− y)Ψ

1
2 (y)u(y)dy.

Theorem

I Let Assumptions 1 and 2 be satisfied.

I Let λε denotes the principal eigenvalue of operator Lε.

Then λε admits the following asymptotic series expansion as
ε→ 0, for any j ∈M,

1

‖Ψ‖∞
λε = 1 +

p∑

k=0

ε1+kλ2k,j +O
(
εp+2

)
as ε→ 0.

for any p ≥ 0; and where

I {λk,j}k≥0 is a unique well defined sequence for each j;

I λ2k+1,j = 0 for all k.



Concentration of the principal eigenvector ψε of Lε...

Theorem

I Let Assumptions 1 and 2 be satisfied.

I Consider the principal eigenvector ψε of Lε; ‖ψε‖L1(RN ) = 1.

I Assume that M = {i}.

1. Then, for each ν ∈ (0, γ0), there exists η > 0 such that the
following concentration property holds true:

∫

RN\B(xi,εν)
ψε(x)dx = O

(
exp

(
−ηεν−γ0

))
as ε→ 0.

2. In particular, one gets ψε → δxi as ε→ 0 for the narrow
topology: ∀f ∈ C

(
RN
)

ones has

lim
ε→0

∫

RN
f(x)ψε(x)dx =

∫

RN
f(x)δxi (dx) = f (xi) .



Concentration of the principal eigenvector ψε of Lε...

Theorem

I Let Assumptions 1 and 2 be satisfied.

I Consider the principal eigenvector ψε of Lε; ‖ψε‖L1(RN ) = 1.

I Assume that M = {i}.

1. Then, for each ν ∈ (0, γ0), there exists η > 0 such that the
following concentration property holds true:

∫

RN\B(xi,εν)
ψε(x)dx = O

(
exp

(
−ηεν−γ0

))
as ε→ 0.

2. In particular, one gets ψε → δxi as ε→ 0 for the narrow
topology: ∀f ∈ C

(
RN
)

ones has

lim
ε→0

∫

RN
f(x)ψε(x)dx =

∫

RN
f(x)δxi (dx) = f (xi) .



Concentration of the endemic steady state (S∗ε , i
∗
ε, A

∗
ε).

Corollary:

I Let Assumptions 1 and 2 be satisfied.

I limε→0 T ε0 = T 0
0 := Λ

µ‖Ψ‖∞ > 1,

T ε0 =
Λ

µ
sup

ϕ∈L2(Ω)
‖ϕ‖L2(Ω)=1

∫∫

Ω×Ω
Ψ

1
2 (x)Ψ

1
2 (y)Jε(x−y)ϕ(x)ϕ(y)dxdy.

If M = {i} then the endemic steady state (S∗ε , i
∗
ε, A

∗
ε) satisfies :

1. limε→0 S
∗
ε = 1

T 0
0
,

2. ∀f ∈ C(RN ), limε→0

∫
RN f(x)A∗ε(x)dx =

T 0
0 −1

µβ(xi)
f (xi) ,

3. limε→0

∫
RN f(x)i∗ε(a, x)dx =

T 0
0 −1

µT 0
0
f (xi) e

−µa in

L1(0,∞) ∩ L∞(0,∞).
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Concentration of the principal eigenvector ψε of Lε...

I If Ψ is symmetric; M = {i, j} with i 6= j and xi = −xj then,
since the principle eingevector is also symmetric, the endemic
stationary state (equally) concentrates on these two points
yields to a dimorphic steady state.

I From a biological point of view, the condition M = {i} is a
reasonable assumption.

I In that case, when the dispersal in the phenotypic trait space is
small, the unique endemic steady state of the model
concentrates on a single trait.

I The equilibrium population is essentially monomorphic.
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