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U The sustainable management of plant disease has two
distinct but interdependent goals:

= Immediate epidemiological > reducing severity and
frequency of disease epidemics

= Longer-term evolutionary - reducing the rate of
evolution of new patho-types (i.e. preserving the
efficiency of disease resistance genes)

U Here, we model epidemiological and evolutionary dynamics
of spore-producing pathogens in a host population.

0 The host population did not represent individual plants,

but rather leaf area densities (leaf surface area per m2).
Zhan J. et al., Annu Rev Phytopatol (2015)
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Model (Host homogeneity)

d(a,
u 80) p+d(a,x)

Healthy host Infection efficiency Infected

A S(t)

Probability density function that a spore
with phenotype X mutates to x

Spore pool

Je(x, %)

7(a, %) = pO) X [e0),r(0+1001 (@)
Je@) =) (5) e«

Djidjou Demasse et al., Math. Models Meth. Appl. Sci., 2017



Model equations (Host homogeneity)

NS(t) =N —puS(t)—S(t )[;@ By)A(t, y)dy

(O +c‘),,) (T a,r) = —/u(?‘ a,x),
i(t,0,2) = B(x)S(t)A(t,:

oo
At x) = /m J(x —y)rla,y)i(t,a,y)dady — SA(, x).
RN J(

with
St = )€R+
i(t=0,..) € L ((0.00) x RY)
At =0,)e Ll (RY).



Evolutionary Attractor (EA)

The EAs are characterized by the following fitness function:

Infection efficiency

o0
X
Y(x):= F) r(a,x) e **da
6 0
r(a,x): = pOO) X000+ (@)
Sporulation rate Latent period

The phenotype x* is EA if x* maximize ¥
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MAX, W(x) = P(x1) = ¥P(x2)

two EAs

{x15 x2}

Which EA will asymptotically persist?:

Globally Stable Evolutionary Attractor
(GSEA)
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MAX, ¥ (x) = ¥ (x;) = ¥(xz)

two EAs é
{x15 x2}
(a) g
:
15
1
6
0.5 1 2 I:Q(TimZ)
0 Metastable behavior.
——Fitness function (1(x)) Before the system concentrates around the
I Density of pathogen pop. at t=0 GSEA x,, it persists on the EA x, for a
0 02 04 06 08 1 relatively long time interval, whose size

Phenotypic distance (x) depends on ¢ and diverges to +o as € - 0.



Host heterogeneity

& Context: Two cultivars:

sensitive (S) quantitative resistant (R)

& Objectives:
O Reducing the severity of disease epidemics.
O Preserving the efficiency of disease R genes.



Host heterogeneity

W Each environment induced a specific fitness function:
Senvir. © Y = G(m4,0)

R envir. © Wy = G(m,,0)

WThe fitness function of S and R envir.:

S+ Renvir. © ¥ := Pslps'l'(l—Ps)LPR
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Host heterogeneity
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Some technical materials

(05(0) = A~ us() = 50) [ 80
(Or + 0y)i(t,a,z) = —pi(t,a,x),
i(t,0,z) = B(x)S(t)A(t, x),

K8,514(15,:13) = /]RN /OO J(x —y)r(a,y)i(t,a,y)dady — §A(t, ).

S(t= )€R+,
i(t=0,.,.) € L} ((0,00) x RY)
At = )EL}r (RY).



A unique non-trivial stationary state...

Observe that (S*,i*, A*) € (0,00) x L} ((0,00) x RY) x L (R")
is a stationary state of the model iff

LIA)(r) = g A"(),
A—puS*=5" /RN B(y)A*(y)dy and i*(a,z) = B(x)S* A" (x)e 1.

with

and
/ r(a,z)e”**da.( fitness function)
0

Therefore the study of the stationary state of the model strongly
relies on the spectral properties of L.



Model assumptions
Assumption 1 (Fitness function):

» The fitness function ¥ : RN — R is assumed to be
continuous on R and lim g so0 Y(z) = 0.

» There exists a finite number of points {x1,.., 73/} C RY;
{z € RY . W(z) = 19]|oc } = {21, . 2m}

and Vk, the Hessian —D?W (z},) is positive definite.



Model assumptions
Assumption 1 (Fitness function):

» The fitness function ¥ : RN — R is assumed to be
continuous on R and lim g so0 Y(z) = 0.

» There exists a finite number of points {x1,.., 73/} C RY;
{z € RY . W(z) = 19]|oc } = {21, . 2m}
and Vk, the Hessian —D?W (z},) is positive definite.
Assumption 2 (Mutation kernel):
» J is non-negative, J(—z) = J(z) and [pn J(z)dz = 1.

» There exist some constants My > 0, 79 > 0 and 79 € (0,1)
such that

J(x) < Mpexp (—nolz||°), a.e. z € RY.

(J )
» The covariance matrix X[.J] of the probability measure
J(x)dz is positive definite.



A unique non-trivial stationary state...

Theorem
Let Assumption 1 and 2 be satisfied. Define the number Ty by

To = A sup // v
K oeL2(RN) RN xRN

HS"”LZ(]RN):l

N|=
-

()2 (y)J (z —y)p(z)p(y)dzdy.

» When Ty < 1, then the model has a unique equilibrium point
(50,0, A%) = (%,0,0) .



A unique non-trivial stationary state...

Theorem
Let Assumption 1 and 2 be satisfied. Define the number Ty by

To = A sup // v
K oeL2(RN) RN xRN

HS"”LZ(]RN):l

N|=

(€)W (y)J (z — y)p(x)p(y)dady.

» When Ty < 1, then the model has a unique equilibrium point
0 ;0 A0\ ._ (A
(50,0, A%) = (#,o,o).
» When Ty > 1, then the model has two different equilibrium
points (SO,Z'O,AO) and (S*,i*, A*):
0<8*<8% A% e LYRN) N L®°RY) with A* > 0 a.e.,
and i*(a,x) = B(x)S*A*(x)e M.



Next...

[Reed M., Simon B.(1979). Helffer B., Sjostrand J.(1984). Klein M., Rosenberger E.
(2008)]

We now assume that the mutation kernel J depends upon a small
parameter 0 < £ << 1 and takes the form

Jo(z) = NJ (g) , Vz € RV,



Next...
[Reed M., Simon B.(1979). Helffer B., Sjostrand J.(1984). Klein M., Rosenberger E.
(2008)]

We now assume that the mutation kernel J depends upon a small
parameter 0 < € << 1 and takes the form
Ny (% N
Jo(z) =€ J(f), Vo € RY.
€
We aim at describing the behaviour of the endemic equilibrium

point (S7,i%, A%) of the model as ¢ — 0.
A? arises as the principle eigenvector of the linear operator

Llul(@) = W3 (@) | el = ) ()uly)dy.



Asymptotic expansion of the principal eigenvalue of L~...

Problem (*): Ly%(z) = X\*¢°(z), on LY(RY) N L= (RY).



Asymptotic expansion of the principal eigenvalue of L~...

Problem (*): Ly%(z) = X\*¢°(z), on LY(RY) N L= (RY).

Vaj € {z1,.,am}i={z € RY : ¥(z) =¥} ; find a formal
solution of (*) of the form

sz(x) = Zgggphj <x _ xj) and /\3 = ||\I/Hoo <1 + Zgl+§)\k7j> R

1
k=0 €2 k=0




Asymptotic expansion of the principal eigenvalue of L~...

Problem (*): Ly%(z) = X\*¢°(z), on LY(RY) N L= (RY).

Vaj € {z1,.,am}i={z € RY : ¥(z) =¥} ; find a formal
solution of (*) of the form

o0 oo
— X, k
=Y clony ( ; J) and A5 = || ¥/ <1+Zel+mk7j>,
£2

k=0 k=0

where {¢@ i }is0 C L2(RY) and {\ ;x>0 C R are determined by
using:

> a recurrence relation,

> the elliptic operator Pj := —A+|| (—DQ\II(xj))% x|
Note that

N
2

s Ay
wo,;(x) = (27) et(A;j) exp 5 and Ao ; = —tr(4;).



Asymptotic expansion of the principal eigenvalue of L~...

Order relation in the set of maximum points: {z1,..,znm} :={x : V(z) = ||¥||=};

» Define the order < on the set {1,.., M}:

i) e {Mkitiso 2 {iiso -



Asymptotic expansion of the principal eigenvalue of L~...

Order relation in the set of maximum points: {z1,..,znm} :={x : V(z) = ||¥||=};
» Define the order < on the set {1,.., M}:
[ ] <~ {)‘k,i}kzo = {/\k,j}kzo .

» Consider the set M C {1,.., M} defined by

M =max ({1,..,M}, ).
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Order relation in the set of maximum points: {z1,..,znm} :={x : V(z) = ||¥||=};

» Define the order < on the set {1,.., M}:
1 dj = {)‘k,i}kzo = {/\k,j}kzo-
» Consider the set M C {1,.., M} defined by
M =max ({1,..,M}, ).

» If i # j belongs to M then A, ; = A\ ; for all k> 0.



Asymptotic expansion of the principal eigenvalue of L~...

Order relation in the set of maximum points: {z1,..,znm} :={x : V(z) = ||¥||=};

» Define the order < on the set {1,.., M}:
1 dj = {)‘k,i}kzo = {/\k,j}kzo-
» Consider the set M C {1,.., M} defined by
M =max ({1,..,M}, ).

» If i # j belongs to M then A, ; = A\ ; for all k> 0.
> In the case N = 1:

ij e M= (0™ (z;) = ()™ (), ¥n e N.



Asymptotic expansion of the principal eigenvalue of L~...
1
Lul(a) = Wa(@) | (e =)W ()uy)dy.
Theorem
> Let Assumptions 1 and 2 be satisfied.
> Let A° denotes the principal eigenvalue of operator LF.

Then X\¢ admits the following asymptotic series expansion as
€ — 0, for any j € M,

1 P
— N =1+ ZSHR)\%J + 0 (spH) ase — 0.
7 2
for any p > 0, and where
> {Arjtk>0 is a unique well defined sequence for each j;
> )\2k+1,j =0 for all k.



Concentration of the principal eigenvector )¢ of L°...

Theorem

> Let Assumptions 1 and 2 be satisfied.
> Consider the principal eigenvector 1 of L%} ||{)°|| 1 gy = 1.
» Assume that M = {i}.



Concentration of the principal eigenvector )¢ of L°...

Theorem

> Let Assumptions 1 and 2 be satisfied.
> Consider the principal eigenvector 1 of L%} ||{)°|| 1 gy = 1.
» Assume that M = {i}.

1. Then, for each v € (0,70), there exists n > 0 such that the
following concentration property holds true:

/ Y (z)dz = O (exp (—ne” ")) ase — 0.
RN\B(z;,e¥)

2. In particular, one gets )* — 6., as € — 0 for the narrow
topology: Vf € C (RY) ones has

lim ()¢ (z)de = [ f(x)ds; (dz) = f (2:).

e—=0 JrN RN



Concentration of the endemic steady state (S, ¥, AY).

g77¢e?

Corollary:
» Let Assumptions 1 and 2 be satisfied.
> limeso 7 = g = 4119l > 1,

A
To = — sup // \If%(l‘)\lf
B per?(@) QxQ

H‘P”LQ(Q):l

N[

(y)Je(z—y) () p(y)drdy.



Concentration of the endemic steady state (S, ¥, AY).

Corollary:
» Let Assumptions 1 and 2 be satisfied.
> limeso 7 = g = 4119l > 1,

A
To = — sup // Wz (2)
B per?(@) QxQ

H‘P”LQ(Q):l

N[

(y)Je(z—y) () p(y)drdy.

If M = {i} then the endemic steady state (S, i}

e les

A¥) satisfies :
1. lim. oS! = %,

. 79—
2. Vf € C(RN), lime g fon f(2)AL(w)dz = 55 f (1),

0_
3. Time o fy £(2)iz(a, 0)dw = Tt f (ag) e in

LY(0,00) N L>®(0, 00).




Concentration of the principal eigenvector )¢ of L°...

> If W is symmetric; M = {7, j} with ¢ # j and 2; = —z; then,
since the principle eingevector is also symmetric, the endemic
stationary state (equally) concentrates on these two points

yields to a dimorphic steady state.



Concentration of the principal eigenvector )¢ of L°...

> If W is symmetric; M = {7, j} with ¢ # j and 2; = —z; then,
since the principle eingevector is also symmetric, the endemic
stationary state (equally) concentrates on these two points
yields to a dimorphic steady state.

» From a biological point of view, the condition M = {i} is a
reasonable assumption.

> In that case, when the dispersal in the phenotypic trait space is
small, the unique endemic steady state of the model

concentrates on a single trait.
» The equilibrium population is essentially monomorphic.
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