

Model-based control of spatiotemporal epidemics using latent processes

Gavin J Gibson

Maxwell Institute for Mathematical Sciences Heriot-Watt University

JOINT WORK WITH: Hola Adrakey, Chris Gilligan, Nik Cunniffe (Cambridge), Tim Gottwald (USDA), George Stretaris (HWU)

ModStatSAP Meeting, Paris, 19th March 2018

Summary

- Spatio-temporal stochastic models for informing control strategies
- Formulation of posterior measures for guiding control strategy
- Use of functional-model representations (noncentered parameterisations) for efficient comparison
- Conclusions where to look for infection to maximise impact of control?

Generic problem

Observation of emerging epidemic

How should subsequent survey/control be designed in order to achieve a desired goal given available resources?

Citrus canker epidemic: Dade County, Miami, Florida

 $S \rightarrow E$: If *j* is in state *S* at time *t*, then \P

 $Pr(j \text{ exposed } (t, t+dt)) = (\varepsilon + \beta \Sigma_i K(d_{ij}, \alpha))dt + o(dt)$

 $E \rightarrow I: T_{E}^{j} \sim \pi_{\theta_{E}}^{E} \qquad (random sojourn time in E)$ $I \rightarrow R: T_{I}^{j} \sim \pi_{\theta_{I}}^{I} \qquad (random sojourn time in I)$ $Parameters: <math>\theta = (\varepsilon, \beta, \kappa, \theta_{E}, \theta_{I})$

Here we focus on simpler SI model with cryptic infections – infections only become symptomatic after fixed (known) period Δ (c.f. Neri et al (2014)).

Eradication strategy – ring culling

- Attempts to control Miami urban epidemic used a 1900ft eradication radius
- Model-based predictions of effective radius strongly dependent on choice of spatial kernel

Model fitting in Bayesian framework

- For 'complete' data *x(T)* (e.g. times and nature of all transitions up to time *T*) π(*x* | θ) tractable
- Given censored/filtered/noisy data y, π(y | θ) typically intractable
- Use data augmentation and sample from $\pi(\theta, \mathbf{x}(T) | \mathbf{y}) \propto \pi(\theta) \pi(\mathbf{x}(T), \mathbf{y} | \theta)$ using e.g. MCMC
- Updating x often requires reversible-jump techniques given variable dimension

(See e.g. GJG, 1997, O'Neill & Roberts, 1999, Streftaris & GJG, 2004, Forrester *et al.*, 2007, GJG *et al.*, 2006, Chis-Ster *et al.* 2008, Starr *et al.* 2009, Jewell & Roberts, 2007, Neri *et al.*, 2014, Lau *et al.*, 2015)

HERIOT WATT Functional-model representations

Functional models (Dawid & Stone, 1983)

Consider outcome as deterministic function $h(q, \theta)$ where q has known distribution independent of θ .

In model choice q can be used as a latent residual process.

Investigating $\pi(\theta, q | \mathbf{y})$ rather than $\pi(\theta, \mathbf{x} | \mathbf{y})$ facilitates model assessment via latent classical tests.

Here we extend the idea to formulate models for epidemic dynamics in the presence of control d, so that $x = h^*(q, \theta, d)$.

Assigns threshold q_i to each individual. If $R_i(t)$ denotes infectious challenge to *i* at time *t*, infection time x_i occurs when integrated challenge reaches threshold

Sellke Construction (Sellke, 1983)

$$q_i = \int_0^{x_i} R_i(t) dt \sim \mathsf{Exp}(1)$$

•Epidemic dynamics specified (for SI with cryptic) by \underline{q} (vector of Sellke Thresholds) and θ , i.e. ($\mathbf{x} = h(\underline{q}, \theta)$).

•For controls *d*, <u>based on removal of infected individuals</u>, it follows that $\mathbf{x} = h^*(\underline{q}, \theta, d)$.

• Gives a means of <u>coupling</u> epidemic trajectories <u>under different</u> <u>control strategies</u>.

- Based on removal of hosts found to be infected at control time t_c (by perfect diagnostic test if not obviously infected).
- *N*′hosts can be targeted (resource constraint)
- Impact assessed at time $T_A e.g.$ via number of infections occurring by T_A .

$$\underline{v}$$
 t_{obs} t_c T_A
Observation of
emerging epidemic

Which hosts *j* to target?

Based on $E(G_M(\mathbf{x}(t), j) | \mathbf{y})$ at some time $t = t_M \ge t_{obs}$

Measure calculated on host Host index Epidemic trajectory up to t.

Candidate measures - (*x_j* denotes infection time of *j*)

 $G_R(x(t), j) = I_{\{xj < t\}}$ - 'Risk'

 $G_{H}(\mathbf{x}(t), j) = \sum_{x_{i} > t, i \neq j} \beta K(d_{ij}, \alpha)$ - 'Hazard'

 $G_T(\mathbf{x}(t), j) = G_R(\mathbf{x}(t), j) \times G_H(\mathbf{x}(t), j)$ - 'Threat'

- Use random sample from π(θ, x(t) | y) to generate sample of size m from π(θ, q | y).
- Let u(x(T)) denote the number of infections by time T for trajectory x(T). Let d denote control strategy.

$$\mathbf{x}(T) = h(\theta, \mathbf{q}), \qquad \mathbf{x}_{d}(T) = h^{*}(\theta, \mathbf{q}, \mathbf{d})$$

 $\mathsf{EER}(d) = -\Sigma_i \{ u(h^*(\theta_i, \mathbf{q}_i, d)) - u(h(\theta_i, \mathbf{q}_i)) \} / m$

Here we take *m* = 1000 draws (θ_i, q_i) from π(θ, q |y), using these as a test-bed of 'pre-epidemics' on which to compare controls.

HERIOT Simulation: non-clustered

Simulated epidemic: Uniformly distributed population, primary + exponential kernel

Parameters Δ = 100, α = 0.08, β = 7 x 10⁻⁶, ε = 5 x 10⁻⁵

Estimated by Neri et al (2014)

Consider application of control applied at t = 460, with impact assessed at t = 500.

Hazard

Threat

Hazard, Risk and Threat maps

Threat map marginally more effective that risk map regardless of when measures are estimated.

Citrus location in Broward county (Florida)

- Citrus locations from Dade county
- 1111 trees spatially distributed
- Citrus canker epidemic on this population analysed by Neri et al (2014)
- Canker typically controlled using ringculling strategies (not yet considered in this framework but amenable to it)
- Simulate epidemics of 2 types:
 - exponential kernel with primary
 - exponential kernel no primary

Case	α	β	e	t_{obs}	Infections observed	Cryptic	Т
(I)	0.08	7.10^{-6}	0.00005	460	169	133	500
(II)	0.08	8.10^{-6}	0	460	111	124	500

Parameters Δ = 100, α = 0.08, β = 7 x 10⁻⁶, ε = 5 x 10⁻⁵

Estimated by Neri et al (2014)

(a)

(b)

Hazard, risk and threat, $t_M = 460$

Case I: $t_M = t_C = 460$

- Threat map gives largest expected reduction
- Effect largest for smaller N' when resources are scarce
- Hazard map generally poorest performance

Simulated epidemic (no primary, Case 2)

Parameters: $\alpha = 0.08$, $\beta = 8 \times 10^{-6}$

HERIOT WATT **Risk, hazard and threat maps** at $t_M = 460$

Hazard

200 m • Symptomatic hosts

Risk

Threat

ERIOT WATT **Case II:** $t_M = t_C = 460$

- Threat map gives largest expected reduction
- Effect largest for smaller N' when resources are scarce
- Reflects differences in hosts appearing at the 'top of the order'

HERIOT WATT UNIVERSITY Induced correlation under coupling, epidemic size for N' = 111

- Bayesian framework provides flexible means to design controls using different prioritisation measures
- A strategy which 'locates' the most infections may not be optimal
- In structured populations strategies that prioritise searches using the <u>threat</u> measure may better identify potential 'superspreaders'(?)
- Coupling of epidemics leads to variance reduction, potentially removing need to embed simulation in optimisation routines
- Focus on small population of pre-epidemics makes approach inherently parallelisable

Next steps

- More complex constrained design spaces
- Applications to 'ring-culling' strategies
- Incorporation of uncertainty in diagnostic tests
- Generalisation of cost functions