Introduction	Experimental data	Models	Results	Conclusion	Perspectives

A simple leaf-scale model for assessing life-history traits of fungal parasites with growing lesions

Melen Leclerc, Frédéric Hamelin & Didier Andrivon

INRA - Institute for Genetics, Environment and Plant Protection

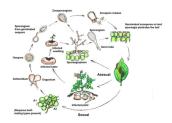
ModStatSAP Network meeting - Paris - March 2018

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Conte	xt		

- Assessing life-history traits of pathogens is central for several purpose in phytopathology
- $\rightarrow\,$ Understand the biology and the evolution of pathogens
- ightarrow Evaluate the effects of plant resistance on the life-cyle of pathogens
- $\rightarrow~$ Optimise plant breeding for resistance

. . .

ightarrow Predict the spread, the emergence or the adaptation of plant pathogens



Pathogen with growing lesions

- Empirical studies often rely on observations at the lesion scale
- The lesion scale is also central for studies aiming at scaling-up epidemic development (Cunniffe at al., 2012; Segarra et al., 2001; Spijkerboer, 2004)
- When the pathogen spreads substantially in host tissues and induces a growing lesion, the direct measurement of key life-history traits such as latency period or sporulation dynamics is challenging
- One needs to disentangle the spatial spread of the pathogen and the epidemiological dynamics of each infinitesimal surface after infection (Hethcote and Tudor, 1980; Powell et al., 2005; Segarra et al., 2001)
- It has received little attention in theoretical plant disease epidemiology (Powell et al.,2005)

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Aims of the	e study		

- Build a parsimonious mechanistic model for assessing life-history traits of pathogens with growing lesions
- Use this epidemiological model to analyse empirical data and provide estimates of the spread of the pathogen, the latency period and the sporulation dynamics
- Assess the effects of quantitative resistance on the pathogen

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
	E	xperimental	data		

- Phytophthora infestans which causes the late blight of potato
- 2 strains $K = \{BP3, BP6\}$
- 3 cultivars $J = \{Bintje, Möwe, Désiré\}$
- More than 100 inoculated leaves for each strain x cultivar pair
- For each destructive observation \mathcal{O}_i , measurement of the size of the lesion at time since inoculation, the minor and major radii of the leaf, and the number of spores present on the leaf

Int		-I			
Int	ro	au	CLI	оп	

Experimental data

Models

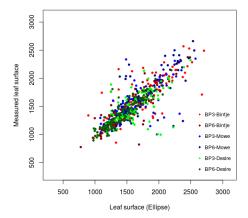
Results

Conclusion

Perspectives

A simple model for the growing lesion

We consider that the leaf is an ellipse with radii R1 < R2



◆ロト ◆昼 と ◆臣 と ◆臣 と 今への

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
	A simple i	model for th	ne growing	lesion	

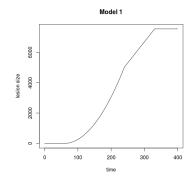
Lesion growth model

Leaf size $L = R_1 R_2 \pi$ with $R_1 < R_2$ ellipse radii

Let $t_0 \ge 0$ be the delay between inoculation and the initiation of the lesion.

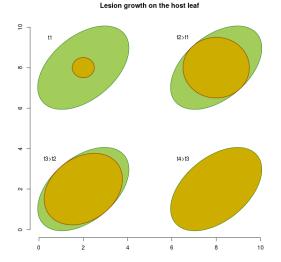
The surface of the lesion at time t is given by :

$$\ell(t) = \pi \min(\rho(t - t_0), R_1) \min(\rho(t - t_0), R_2)$$



Introduction	Experimental data	Models	Results	Conclusion	Perspectives

A simple model for the growing lesion



- 《日》 《聞》 《臣》 《臣》 三臣 - のくで

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Sporulation m	odel		

Spore production at the lesion scale

Let be $\sigma(a)$ a continuous time emission function giving the quantity of emitted spores at age since infection *a* per infinitesimal spatial infectious unit.

The total number of spores produced at time t by the lesion is given by :

 $s(t) = \int_0^t \ell(t-a)\sigma(a) \mathrm{d}a$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Sporulation	n model		

Spore production at the lesion scale

Let introduce a latency period t_1 .

The total number of spores produced at time t by the lesion is given by :

$$s(t) = \int_0^{t-t_1} \ell(t+t_0-t_1-a)\sigma(a) \mathrm{d}a$$

Introduc	ion Experimental data	Models	Results	Conclusion	Perspectives
		Sporulation	model		
9	pore production at the	lesion scale			
	Let	introduce a late	ency period t_1		
	The total number of sp	ores produced a	t time <i>t</i> by th	e lesion is given	by :

$$s(t) = \int_0^{t-t_1} \ell(t+t_0-t_1-a)\sigma(a) \mathrm{d}a$$

Emission function

We define the continuous emission function $\sigma(a)$ using a Rayleigh distribution :

$$\sigma(a) = S \times \frac{a}{\mu^2} \exp\left(-\frac{a^2}{2\mu^2}\right)$$

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Sporulatior	n model		
	$\boldsymbol{s}(\mathbf{t}) = \begin{cases} 0 \\ \mathbf{s}_{1}(\mathbf{t}, \mathbf{t}) \\ \mathbf{s}_{\mathbf{t}}(\mathbf{t}, \mathbf{T}) \end{cases}$		$ \begin{array}{ll} \text{if} \mathbf{t} \leq \mathbf{t_0} - \delta = \\ \text{if} \mathbf{t_0} - \delta \leq \mathbf{t_0} \\ \text{if} \mathbf{t} \delta < \mathbf{t_0} \end{array} $	$= t_1, \\ < \tau_1 - \delta,$	(1)

$$s_{1}(t) = \begin{cases} -1 \cdot (t, -T_{1}) + s_{2}(t, t) & \text{if } T_{1} - \delta \leq t < T_{2} - \delta \\ s_{1}(t, T_{1}) + s_{2}(t, T_{2}) + s_{3}(t) & \text{if } T_{2} - \delta \leq t \end{cases},$$
(1)
$$s_{3}(t) = LS \left(1 - \exp\left(-\frac{(t+\delta - T_{2})^{2}}{2\mu^{2}}\right) \right).$$
(2)

Then, we obtain :

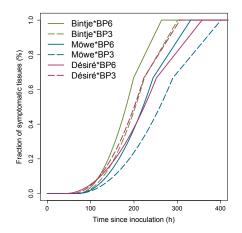
$$s_{2}(t, T) = S_{\pi}R_{1}\rho\left((T + \delta - t_{0})\exp\left(-\frac{(t - T)^{2}}{2\mu^{2}}\right) - (T_{1} - t_{0})\exp\left(-\frac{(t + \delta - T_{1})^{2}}{2\mu^{2}}\right)\right) + S_{\pi}R_{1}\rho\left(\sqrt{\frac{\pi}{2}}\mu\left(\operatorname{erf}\left(\frac{t - T}{\sqrt{2}\mu}\right) - \operatorname{erf}\left(\frac{t + \delta - T_{1}}{\sqrt{2}\mu}\right)\right)\right),$$
(3)

and

$$s_{1}(\mathbf{t}, \mathbf{T}) = S_{\pi\rho^{2}}\left(\left((\mathbf{t} + \delta - \mathbf{t}_{0})^{2} + 2\mu^{2}\right)\exp\left(-\frac{(\mathbf{T} - \mathbf{t})^{2}}{2\mu^{2}}\right) - 2\mu^{2}\exp\left(-\frac{(\mathbf{t} + \delta - \mathbf{t}_{0})^{2}}{2\mu^{2}}\right)\right) + S_{\pi\rho^{2}}\left(-\sqrt{2\pi}\mu(\mathbf{t} + \delta - \mathbf{t}_{0})\left(\operatorname{erf}\left(\frac{\mathbf{t} + \delta - \mathbf{t}_{0}}{\sqrt{2\mu}}\right) + \operatorname{erf}\left(\frac{\mathbf{T} - \mathbf{t}}{\sqrt{2\mu}}\right)\right)\right).$$
(4)

where erf is the Gauss error function.

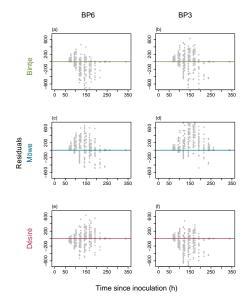
Introdu	ction	Experimental data	Models	Results	Conclusion	Perspectives
			Models fitti	ng		



・ロト ・聞 ト ・ ヨト ・ ヨト ・ ヨー つくぐ

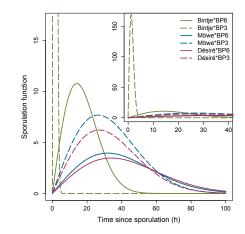
Perspectives

Models fitting



コン (雪) (雪) (雪) (雪) (雪) (つ)

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Models fi	tting		

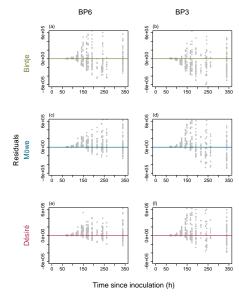


Results

Conclusion

Perspectives

Models fitting



|□▶ <畳▶ < 亘▶ < 亘▶ < □▶ < □ > のへの

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Models fi	tting		

			BP3			BP6	
		Bintje	Möwe	Désiré	Bintje	Möwe	Désiré
Parameter	Unit						
t_0	hours	70.0	67.4	56.1	70.0	70.0	41.2
ρ	$cm.hours^{-1}$	0.26	0.18	0.24	0.31	0.23	0.19
t_1	hours	71.6	77.1	83.3	77.1	91.6	77.2
5	spores.cm $^{-2}$	343	338	280	251	207	200
μ	hours	3.5	28.1	27.6	14.8	30.6	35.9

Introduction	Experimental data	Models	Results	Conclusion	Perspectives			
Statistical analysis								

• Pairwise comparison of treatments using F-tests (Gilligan, 1990) :

$$F = \frac{[RSS_{CM} - RSS_X]/[df_{CM} - df_X]}{[RSS_{SM_1} + RSS_{SM_2}]/df_{SM}}$$

• Non-significant parameters :

BP3 vs BP6 \rightarrow t_1 on Bintje, μ on Möwe, latency on Désiré BP3 \rightarrow t_1 for Bintje vs Désiré and Möwe vs Désiré BP6 \rightarrow t_0 for Bintje vs Désiré, { t_1, s, μ } for Möwe vs Désiré

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Conclusio	n		

- A simple modelling framework for assessing life-history traits of pathogens with growing lesions (we have an analytical solution !)
- Some discrepancies but it captures the main processes
- Using mechanistic models for analysing the observation of plant lesions provides a better understanding of the effects of plant resistance on pathogens
- For the late blight of potato :
- \rightarrow strain x cultivar interaction
- $\rightarrow\,$ quantitative resistance : reduces the speed of the spread of the lesion and the number of emitted spores, induces a change in the emission function (delayed mode)
- $\rightarrow\,$ less effects on the latency period

Introduction	n Experimental data	Models	Results	Conclusion	Perspectives
		Perspec	tives		

Investigate other pathosystems :

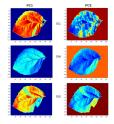
 \rightarrow Mycosphaerella pinodes & Phoma medicaginis on pea (Ascochyta blight of pea disease complex)

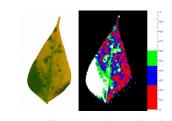
 \rightarrow Ontogenetic and disease-induced changes in host susceptibility (plant senescence - yellowing) (Richard et al., 2012)

Improve experimental measurements :

 \rightarrow Multi-modal imaging : RGB, fluorescence, hyperspectral (data assimilation with filtering methods ? ?)

 \rightarrow Molecular techniques for measuring the density of pathogens and plant responses





Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Perspec	tives		

Spatially-explicit models :

Reaction-diffusion models (homogeneous and/or inhomogeneous)

$$\frac{\partial u}{\partial t} = \nabla . (D(t, \mathbf{x}) \nabla . u) + f(t, \mathbf{x}, u)$$

where u is the cryptic density of the pathogen

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		es			

Spatially-explicit models :

Nonlinear diffusions (ontogenetic and disease-induced changes in the susceptibility)

$$\begin{aligned} \frac{\partial u}{\partial t} &= \nabla . (D_u(t, \mathbf{x}, u, v) \ \nabla . u) + f_u(t, \mathbf{x}, u) \\ \frac{\partial v}{\partial t} &= \nabla . (D_v(t, \mathbf{x}, u, v) \ \nabla . v) + f_v(t, \mathbf{x}, v) \\ D_u(t, \mathbf{x}, u, v) &= g_u(v) \\ D_v(t, \mathbf{x}, u, v) &= g_v(u) \end{aligned}$$

where u is the pathogen and v related to host physiology/susceptibility

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Perspec	tives		

Spatially-explicit models :

Nonlinear cross-diffusion (co-infections)

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + D_{uv} \nabla^2 u + f_u(u) + g_u(u, v)$$
$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + D_{vu} \nabla^2 u + f_v(v) + g_v(u, v)$$

where D_u and D_v are the diffusion coefficients of respectively u and v, $D_u v$ and $D_v u$ are cross diffusion coefficients of u and v respectively.

Introduction	Experimental data	Models	Results	Conclusion	Perspectives
		Perspect	tives		

- Relax the hypotheses on the distribution of latency and infectious periods \rightarrow Generic Integral equation models (Hethcote et al. 1980, Segarra et al. 2001)
 - \rightarrow Easier if (Generalised) Erlang distributions ...

$$\begin{aligned} \frac{\mathrm{d}\mathbf{S}}{\mathrm{d}\mathbf{t}} &= -\beta \left(\sum_{k=1}^{n} l_{k} \right) \mathbf{S}, \\ \frac{\mathrm{d}\mathbf{E}_{1}}{\mathrm{d}\mathbf{t}} &= \beta \left(\sum_{k=1}^{n} l_{k} \right) \mathbf{S} - m\gamma \mathbf{E}_{1}, \\ \frac{\mathrm{d}\mathbf{E}_{i}}{\mathrm{d}\mathbf{t}} &= m\gamma \mathbf{E}_{i} - m\gamma \mathbf{E}_{i-1}, \qquad (1 \leq i \leq m-1) \\ \frac{\mathrm{d}l_{1}}{\mathrm{d}\mathbf{t}} &= m\gamma \mathbf{E}_{m} - n\mu l_{1}, \\ \frac{\mathrm{d}l_{i}}{\mathrm{d}\mathbf{t}} &= n\mu l_{i} - n\mu l_{i-1}, \qquad (1 \leq i \leq n-1) \\ \frac{\mathrm{d}\mathbf{R}}{\mathrm{d}\mathbf{t}} &= n\mu l_{n}. \end{aligned}$$

Improve statistical inference (e.g. heteroscedasticity), optimal design of experiments for parameter estimation and model selection

Experimental data

Models

Results

Conclusion

Perspectives

Thank you for your attention !

melen.leclerc@inra.fr