

ModStatSAP – Paris 2018

Using physiologically and spatially structured consumer-resource population models to address current issues in plant pathology

Christophe Gigot, Pierre-Antoine Précigout, David Claessen & Corinne Robert

19 mars 2017

Context

Industrial farming in developed countries: unsustainable in the medium/long run (pathogen evolution, soil depletion, pollution, ...).

 \rightarrow A possible way to explore: agroecology.

Agroecology: Using biodiversity to promote self-regulation of agroecosystems

It seeks to replace external inputs by biotic and abiotic interactions between organisms to reach some level of self-regulation in agrosystems.

Tools & concepts from theoretical ecology to address agronomic questions:

- Systemic & long-term approach;
- Dynamics;
- Interactions and feedbacks between organisms;
- Evolution.

In this context: Using physiologically and spatially structured consumer-resource population models to address epidemiology and evolution of plant-pathogens systems.

Our question: How to take advantage of available host <u>resource</u> dynamics to mitigate pathogens' impacts in agroecosystems?

Method: Pathosystems viewed as consumer-resource interactions.

A strong collaboration between INRA (UMR ÉcoSys, ecophysiology & epidemiology) and ENS (CERES, ecology & evolution).

EcoSys

- Two dynamic interaction scales:
 - \rightarrow Leaf tissue (infection cycle) = <u>patch</u>.
 - \rightarrow Canopy (spores dispersal).
- Generic approach applied to brown rust and septoria tritici blotch (STB).

Resources dynamics at 3 scales

Leaf portion (patch, ca. cm²)

- Resources available for the pathogen (lesions).
- Depend on leaf age (and infection age).

Host canopy

- Vertical and temporal resource distribution for the epidemics (polycyclic).
- Depend on crop growth (and epidemic dynamics).

Landscape

- Horizontal resource distribution at a larger scale (pathogen metapopulation).
- Depend on agricultural practices (and long-distance spore dispersal).

Modeling approach #1 Presentation 1

Postdoc C. Gigot (INRA ÉcoSys & ENS IBENS, 2016-2018)

Objective: Simulate and understand STB polycyclic epidemics using resource-based models at **patch and canopy scales**.

- Physiologically structured population model applied to epidemiology.
- Age-structured SEIR epidemiological model.

- Spatial scale: Patch and canopy.
- **Temporal scale:** (1) Set of ODEs integrated with adaptive time steps (< 1 dd).
 - (2) Discretized age classes (10 dd).
 - (3) Annual (2500 dd) and pluri-annual.
- Model variables:
- \rightarrow patch scale: patch age & resource, mycelium and spore production & fungal age.
- \rightarrow canopy scale: population distribution of patches of all types.

Software: EBTtool

Modeling approach #1 Presentation 2

Canopy

- A set of dynamic age-structured patches.
- Assumption: birth date proportional to patch height within the canopy.

Selected model: main Run: config Arguments: Data file: config out [0 columns, 0 rows] Project file: main.ebtpr (lun, janv. 8 09 21:24 2018) State file: DeflDcard: DeflDcard: DeflDcard:

> Software: EBTtool

7 foliar resources:

 \rightarrow **7** pycnidia + spores.

 \rightarrow Similar to observations from experiments in controlled conditions.

Modeling approach #1 Results: Consistency checks

Different meteorological data

- Temperature and rain.
- Compare model outputs to recorded disease severity data.

Modeling approach #1 Results: Sensitivity analysis of plant traits on epidemics

Different simulations

- Plant height: modern dwarf varieties, old 2-m-height varieties, ...
- Infection coefficient: quantitative resistance
- Fertilization level (in progress)

Plant height

Software: **EBTtool**

100 F1 F2 F3 75 F4 F5

Infection coefficient

Ó 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Modeling approach #2 Presentation 1

PhD thesis P.-A. Précigout (INRA ÉcoSys & ENS IBENS, 2014-2018)

Objective: Quantify the effects of mosaic of agricultural practices on brown rust epidemics at the **landscape scale.**

Landscape scale:

- Spatially explicit model \rightarrow landscape heterogeneity.
- Simplification of spatial complexity \rightarrow geometry of ecological interaction (Dieckmann et al., 2000).

Assumptions:

- Resource dynamics at the landscape scale impact pathogen dynamics.
- Fertilization determines the quantity of available resources for the pathogen.
- The only spatial heterogeneity in the landscape is the fertilization level of the fields.

Application of this framework to study interactions between fertilization and wheat brown rust (in progress)

Application of this framework to study interactions between fertilization and wheat brown rust (in progress)

Modeling approach #2 Example of results

Fertilization heterogeneity slows down pathogen colonization of the landscape

- Areas with low fertilization → Low spore production and "block" pathogen dispersal.
 → Decreasing epidemics at the landscape scale.
- Pathogen maladaptation.

Pathogen evolution: example of the latent and incubation periods

- → Based on *ad hoc* fitness measures or invasion fitness (adaptive dynamics)
- Fertilization level and brown rust (see below)
- Virulence and STB (in progress)

• Predict (qualitatively) short and long term epidemiological dynamics based on assumptions on the consumer-resource interactions at the lesion, canopy and landscape scales.

• Reveal pathogen trade-offs (transmission, virulence, aggressiveness) that emerge from the interactions between the pathogen and ecophysiological and morphological dynamics of the crop canopy.

• Study the effect of **spatial resource heterogeneity on pathogen dynamics, adaptation and maladaptation**.

Some references:

• Metz JAJ, Nisbet RM, Geritz SAH. 1992. How should we define 'fitness' for general ecological scenarios? *Trends in Ecology & Evolution*, 7, 198–202.

- Précigout P-A, Claessen D, Robert C. 2017. Crop fertilization impacts epidemics and optimal latent period of biotrophic fungal pathogens. *Phytopathology*, 107(10), 1256-1267.
- de Roos AM, Leonardsson K, Persson L, Mittelbach GG .2002. Ontogenetic niche shifts and flexible behavior in size-structured populations. *Ecological Monographs*, 72(2), 271-292.

Thank you