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Motivation

Aim : predict and understand pathogen spread on a cattle trade network

Why using a network ?

@ Accounts for complex
contact structures

@ Natural representation of a
spatial object

@ Abundant data make it
possible to build a labelled
graph

Source : G. Beaunée
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Modeling

Modeling choices and mathematical challenges :

@ Intranodal and internodal population dynamics (imports, births,
deaths, movements)

— When does the cattle population converge to a stationary law,
regardless to the initial condition ?

e Epidemiological dynamics within each node

— How can we define a major epidemic outbreak, compute its occurrence
probability and quantify its amplitude ?

@ Epidemic spread between nodes because of animal movements

— Does the graph structure play a role in determining the major outbreak
probability of an epidemic starting at a given node ?
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1- The population model

@ n nodes standing for holdings (farms and commercial operators)
e Markovian model with discrete state space (jump process X = (X;) >0
on Z7)
@ Unitary jumps
e For a given x=(x,...,x™) population vector :
o Birth rate in node i : b;x!
o Import rate to node i : B;

o Death (or exit to slaughterhouse) rate from node i : d;x!
o Transfert rate from node i to node j : 0; ;jx*

Multitype branching process (BP) with immigration : independent
individuals enter the system at rate B;, give birth at rate b;, move at rate
0;; and die at rate d;.
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The population model
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Stability of the population process

Stability condition for the population process

Define
by —di =¥ #1101, 02,1 On,1

01,2 by —dy =3 4202,

A=
en,n—l

9l,n en—l,l bn_dn_Zj;énen,j
and assume that all eigenvalues of A have a negative real part. Then
Xy =0 is positive recurrent and its law converges at an exponential rate
towards its unique invariant probability.
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Scaling limit for the population process

Scaling parameter N in Xy = xp = N|Xo] (the initial population vector) and
B =NB (the importation rates vector).

As N tends to infinity, convergence over finite time intervals of X/N
towards a deterministic process solution of z’/ = Az +B.

Population evolution (N=10) Population evolution (N=1000)
250 T T T T 25000 T T T T
— Node 1 — Node 1

— Node 2 — Node 2
MWW — Node 3 200K et Node 3
W

15000

WMWWW o SO
B /WM‘W‘“»’N\M“"WW -

A

0 0

0 20 40 60 80 100 0 20 40 60 80 100
Time Time

Population
-
&
S
Population

—
1)
S

1- The population model 7/ 16



2- The epidemiological model

Within each node, three compartments (S, | and R) associated to three
subpopulations S;,1;,R; € Z such that S;+I;+R; =X;.
Define in each node j a Markov jump process SIR for which, at a given
(s,i,r) € N3" state :

@ An additional infection occurs at rate ﬁj%

@ An infectious individual gets removed at rate inf

e Individual have the same birth rate (b;), movement rate (0;) and
death rate (d;) as before

@ Individuals entering the system by birth or immigration are susceptible

@ No infectious contact occurs between individuals that belong to
different nodes
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The epidemiological model
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Comparison with a BP

L . . . - i St = .
Main idea : the infection rate in node i is ﬁillt)é = P;I} in the first stages of
the infection.

For some multitype BP (I});>o with birth rates ;, death rates y; +d; and
movement rates 6; j, denoting by T’ its extinction time and Z' its final size :

Comparison with a BP
For all T=0,

P(II,-I,I — O0|=1
(uu u”N_+oo)

If ™ is the extinction time of the epidemic and ZN its final size, then a.s.

N—+oco N—+o00

[P(TN — T’)ZP(ZN — Z'):l

7! < +o0 : minor outbreak. Z' = +oo : major outbreak.
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Computation of Rq and the major outbreak probability

Two quantities of interest : Ry (basic reproduction number) and
P(Z' = +00).

Definition of Rg

Ry is the highest eigenvalue of the matrix (E(W;,))), It where W; ; is the
typical offspring (for I') in j of an individual born in i, that is, the typical
number of individuals infected in j by an initial, single infective in node i.

Major outbreak probability

P(Z' = +00) >0 iff Rg> 1, and the major outbreak probability for an
epidemic started at node i by a single infectious individual is 1—g*, where
q is the unique fixed point of some explicit, contractant function G
(the generating function of the W; ;).
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3- Application to the Finistere trade network

2015 Finistere trade network (BDNI data) :
@ 4,163 farms, 3 markets, 17 assembly centers
@ 118,311 animals exchanged within Finistere
@ 55,325 animals received from outside of Finistere
@ 241,747 animals sent to slaughterhouses or outside of Finistére
@ Average population over the year : 424,385 animals

For BVD : B =~0.67 days™!, y~! = 5.5 days. For these values of the
epidemiological paramets, the major outbreak is very close to 0.733 for
most node (less than 1% of nodes are associated with values below 0.670).

Numerical application 12 / 16



Application to the Finistére trade network
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Mean and standard deviation of the p’ =1~ g for various nodes (2015
Finistére trade network) according to an epidemic slowing parameter k.

High p' are associated to nodes from which individuals cannot exit the
system, that is, that have low d' and are poorly connected to nodes with
strong d*.
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4- The final size of the epidemic

Dynamical system (#) defined by :

Sk =Br+ br(sk+ix+71i) —disk+ X 20k, Sk — L j#k 0),kSj — BrikSk

Ik = BrikSk — drix — Yrik + X j#k Ok, jix — X 20kl

Tk =Ykik — ke + X j#k Ok, Tk — L j2k 0,k
Heuristics : above a given threshold, the normalized epidemic process looks
(over a finite time interval) like the solutions of this dynamical system. If

there exists an attractive endemic equilibrium for (#), the process stays
close to it for a time that is exponential in N.

Final size of the epidemic in the stable endemic case

If %o =2z* and if (#) admits a stable endemic equilibrium, then the final
size ZN of the epidemic is greater than e*N for some a and all N with
high probability in case of major outbreak.
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@ Determine a condition for the existence and attractivity of the
endemic steady state

@ Derive an upper bound on the final size of the epidemic in the
attractive endemic case

@ Define a more realistic model (epidemiological specification,
endogeneous movements,...)

@ Study the quasi-stationary distribution of I and the extinction time of
the epidemic
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Thank you for your attention !
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