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Introduction : how fast species interact?

Functional responses quantify the interactions between populations
and provide a mortality or natality rate in population dynamics

y ′(t) = ay(t) + y(t)R(x(t),y(t))

in various contexts :
predation
R(x ,y) = bx ; bx/(1 + cx); bx2/(1 + cx2); b/(x + cy)...
epidemiology
R(x ,y) = bx ; b/(x + y)...
mutualism, mating, horizontal genetic transfer, etc ...

They may take into account additional ressources or interactions :
R(x ,y ,z) ...
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Introduction : how fast species interact?

When counting interactions for a given population, functional
responses are mostly based on phenomenological approaches (rather
than individual traits)

They arise at a macroscopic level in population dynamics via
slow fast interactions in Michaelis Menten response : bx/(1 + cx),
and more generally chemical reactions [Kurtz et al...], see also
[Dawes and Souza] for prey predators.
"hunger level" structured population in steady state [Jeschke et
al...]
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Introduction : how fast species interact?

Is the form of R important?

They may give different qualitative and quantitative predictions...
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Introduction : how fast species interact?

How does it look like from individual(s)?

-> Large fluctuations ; affects inference and population dynamics?
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Introduction : how fast species interact?

Objectives

Provide a general approach of the functional form (from modeling
individual behavior)
Describe their fluctuations and develop inference tools

Large population approximation for population dynamics
Genealogies?
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A first simple approach via renewal theory

The successive interaction events between two species are
independent (and identically) distributed as the r.v.

T (n)

which depends on the population sizes n = (n1,n2, ...).
The number of interactions until time t is given by

Nt(n) = #{k ∶ Sk(n) ≤ t}

where
Sk(n) = T1(n) + . . . + Tk(n)

and (Ti(n) ∶ i ≥ 1) are i.i.d. under a regeneration assumption (t has to
be small compared to n).
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A first simple approach via renewal theory

Example for prey predators

Each interaction may be decomposed in successive times, with
success probability, different ressources or interactions.
Typically for prey predators, n = (n1,n2) = (#preys,#predators) and
for one predator

T (n) = TS(n1) + TH

where
TS (searching time) may involve foraging strategy
TH (handling time) may include relapse, satiety, with a low
variance and may include more density dependences.

But also (sheep, partridge,...)
n = (n1,n2,n3) = (#food for preys,#preys,#predators),

T (n) = TS(n1) + Tvigilance(n3) + TH
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A first simple approach via renewal theory

Central limit theorem (renewal theory)

Under a second moment assumption,

Nt(n) − t
E(T (n)) ∼

√
t N (0,

Var(T (n))
E(T (n))3 )

in law as t →∞.
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A first simple approach via renewal theory

A key example : Holling II, Monod functional response

For each predator, the time for interaction

T (x) = TS(x) + TH

with
E(TS(x)) = a/x

yields

Nt(x) ∼t→∞ t
1

a/x +E(TH)
a.s. ie the classical function response with saturation

x
a + x .E(TH)
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A first simple approach via renewal theory

An explicit simple model

Moreover with constant handling

Var(TH) = 0, i .e.TH = c

and deterministic foraging in 1D (random arrival point in a
homogeneous prey repartition on [0,L] and straightline motion)

TS(x) =
Uniform[0,L/x]

v
, v = speed of predator

we get the second order approximation and explicit parameters

Nt(x) − t
x

L/4v + cx
∼
√

tN (0,
x(L/2v)2

(L/2v + cx)3)

in law as t →∞.
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A first simple approach via renewal theory

Examples in 1D : searching, handling and potential
interference
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A first simple approach via renewal theory

An application with data for grey partridge

Baker et al conclude that the vigilance has no effect on seeds
consumption, but including fluctuations lead us to the converse result.

-> 3 sources of randomness : intrinsic +individual variability WIP,
+measurement error.
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Multi-scale large population approximation The model

Here : two populations (n1 preys and n2 predators) with two size scales
K1,K2 and

natural births (rate proportional to the size of the population)
prey predator interactions with searching/ foraging time and
handling time :

TS(x ,y), TH(x ,y)

with x = n1/K1, y = n2/K2

deaths for predators (individual rate depends on the number of
preys eaten)
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Multi-scale large population approximation First order approximation

Age structure of predators for interactions

P(t) : set of preys at time t .
PS(t), resp. PH(t) : set of predators searching resp. handling at time t .

Let ai(t) be the age (for interaction) of i ∈ PS(t) ∪PM(t), i.e. the time to
find in the past the last change of state Searching < − > Handling for i .
The population is described by a measure valued process

⎛
⎝

n1, ∑
i∈PS(t)

δai(t), ∑
i∈PH(t)

δai(t)
⎞
⎠

where n1 = #preys.
Assume that TS(x ,y) and TH(x ,y) have densities (resp. fS(.,x ,y) and
fH(.,x ,y)) and introduce the rates αS(.,x ,y) and αH(.,x ,y)

αH(a,x ,y) = fS(a,x ,y)
∫ ∞a fS(u,x ,y)du

, αS(a,x ,y) =
fH(a,x ,y)

∫ ∞a fH(u,x ,y)du
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Multi-scale large population approximation First order approximation

The transitions for interactions are given for a∗ ∈ A,a′∗ ∈ A′ by

(n,∑
a∈A

δa, ∑
a′∈A′

δa′)

Ð→ (n − 1,∑
a∈A

δa − δa∗ , ∑
a′∈A′

δa′ + δ0) at rate αH(a∗,n1/K1,n2/K2)

Ð→ (n,∑
a∈A

δa + δ0, ∑
a′∈A′

δa′ − δa′
∗
) at rate αS(a′∗,n1/K1,n2/K2)

plus aging (speed 1 for each predator),
plus individual births and deaths.

Trajectorial representation (SDE via Poisson Point Measure following
[Tran]).
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Multi-scale large population approximation First order approximation

First order approximation : fast scale for interactions

Writing K = (K1,K2) and λK = K1/K2

(X K (t),Y K (t)) = (#P(λK t)
K1

,
#PS(λK t) +#PH(λK t)

K2
)

and letting K2 →∞, λK →∞, (X K ,Y K ) converges in law in
D([0,∞), (R+)2) to the unique solution of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x ′(t) = ax(t) − y(t)β(x(t),y(t))

y ′(t) = by(t) − y(t)f (β(x(t),y(t)))

with
β(x ,y) = 1

E(T (x ,y)) = 1
E(TS(x ,y)) +E(TH(x ,y))
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Multi-scale large population approximation First order approximation

An idea of the proof

Use stochastic averaging [Kurtz].
Fast scale of interactions : see [Kang and Kurtz 2013] for chemical
reactions (in finite dimension).
Here in infinite dimension (age structure).

Consider the occupation measure

ΓK ([s, t],dj ,da) = 1
K2

(∫[s,t] duδ1(dj) ∑
i∈PS(λK u)

δai(u)(da)

+∫[s,t] duδ2(dj) ∑
i∈PM(λK u)

δai(u)(da′))

and check that its limiting point is given at time t by the stationary
value of an age structured PDE (quasi equilibrium coming from the fast
time scale of interactions) depending only on the quantity of preys and
predators at time t .
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Multi-scale large population approximation First order approximation

Quasi equilibrium for ages of interactions

For a fixed total number of preys and predators (x ,y) (which vary
slower), the two age densities ms and ns for the populations of
predators evolve as

∂ns

∂s
+ ∂ns

∂a
+ αM(a, .)ns = 0; ns(0) = ∫

∞

0
αS(a, .)ms(a)da

∂ms

∂s
+ ∂ms

∂a
+ αS(a, .)ms = 0; ms(0) = ∫

∞

0
αM(a, .)ns(a)da

and reaches the associated equilibrium n(a,x ,y),m(a,x ,y).
In particular, we can compute the flux

φ(x ,y) = ∫
∞

0
ns(a,x ,y)aM(a,x ,y))da

and get

φ(x ,y) = 1
E(TS(x ,y)) +E(TM(x ,y))
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Multi-scale large population approximation Second order approximation

Quantifying fluctuations from renewal theorem
Considering the number of preys (and assuming here that the time of
interaction for a predator is only prey dependent+fixed number of predators),
we expect that if

K1/K 2
2 → +∞

the process
UK (t) =

√
K1(X K (t) − x(t))

converges in law in D([0,∞),R) to the gaussian process U solution of

U(t) = U(0) − ∫
t

0
β′(x(s))y(0)U(s)ds + ∫

t

0
σ(x(s))

√
y(0)dBs

where B is a brownian motion and

β(x) = 1
E(T (x)) = 1

E(TS(x)) +E(TH(x))

σ(x)2 = Var(T (x))
E(T (x))3 = Var(TS(x)) +Var(TH(x))

(E(TS(x)) +E(TH(x)))3
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Multi-scale large population approximation Second order approximation

An idea of the proof in the exponential case (finite
dimensional Markov process), in progress

Follow [Kang Kurtz Popovic 2014] for fluctuations of multi scale
process (for chemical reactions), see also [Pardoux and Veretennikov
2000s].
We have

UK (t) = UK (0) +V K (t) +W K (t)
where

V K (t) =
√

K1∫
t

0
(β(x(s)) − β(X K (s))ds +

√
K1∫

t

0
(β(X K (s)) − αH(X K (s))Y K

S (s))ds

W K (t) = −
√

K1∫
t

0

1
K1

1u≤λK K2Y K
S (s)αH(X K (s))Ñ (duds)

and consider the Poisson equation Qu(x ,yS,y) = β(x) − αH(x)yS and
use a CLT for martingales.
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Perspectives

Complete the proofs, generalize (non-Markov and multiscale of
fluctuations with births and deaths of predators) and find an
alternative approach for scaling limits (using the duality with
renewal processes?).
Obtain also an expression of large deviation times (exit of tubes
[Freindlin Wentzell]) via this duality.

Beyond regenerative assumption : how does space structure then
change functional responses? (in progress with Geoffroy
Berthelot, Sylvain Billiard and Elizabetha Vergu)

Genealogies (ancestral linages of predators and sampling, in
project : "survivors have eaten faster"),
networks of interactions?
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