

∮≸IRISA

Agrisense Collecte de données agile dans un contexte de parcelles connectées

ModStatSAP : Réseaux de capteurs, phénotypage et modélisation

Jean-Marie Bonnin

Jean-marie.bonnin@irisa.fr

Frédéric Weis Frederic.weis@irisa.fr Professor at IMT / IMT Atlantique Head of IRISA E4SE research team

Assocoate professor / Rennes University Member of IRISA E4SE team

E4SE, who are we?

Application domains

E4SE, who are we?

E4SE, who are we?

Our approach

- The use of IoT technologies has mostly been carried out under the paradigm of massive data collection
 - Logging as much information as possible, storing the data on remote server
 - Implementing statistical and IT methods to extract meaningful information/context
- A more frugal design ?
 - Use as less resources as possible ...
 - ... while having the possibility to use much more when it is required
 - How to locally and dynamically modify the data collection to build a given information/perception with the appropriate quality level ?
- Requirements
 - A fine-grained control on how data is produced by IoT nodes and collected from the environment
 - ➢Agrisense platform

Design AgriSense platform

- A joint project EASE-Demecology (INRAe)
 - IoT low-end devices
 - Low power "on the shelf" MCU
 - Open source embedded OS
 - RIOT OS
 - Open HW interfaces
 - Several power supply stages
 - Ability to drive real (and complex) industrial sensors (SDI12)
 - Fine grained control on power management (active mode / deepest sleep mode)
 - Long lasting autonomy
 - Target of the order of a few μA
- Results: a set of APIs
 - To control the node
 - To process data locally
 - to adjust finely the resource consumption

Design of an open HW (open PCB)

Design of an open SW architecture

First deployed infrastructure

First results

First application: Smart agriculture Detection of plant diseases

Agrisense: next steps

- Agrisense 1st phase
 - POC
 - First study/experimentation based on a generic infection model for foliar fungal pathogens
- New research challenges
 - Design of generic services
 - To be able to describe app requirements in terms of perception quality
 - To identify automatically which information are reality needed during the perception elaboration process
- To open the platform to new applications
 - More complex models for Smart Agriculture
 - Smart building / Smart city

Questions / Comments

