Challenges in estimating parameters and characterizing transmission dynamics from incomplete epidemic data

Simon Cauchemez

Mathematical Modelling of Infectious Diseases Unit Institut Pasteur, Paris

The multiple scales of spread

- Analysis of detailed outbreak data is critical to estimate transmission parameters of infectious diseases
- But burdened by a number of challenges: missing data, measurement errors, censoring...
- Bayesian data augmentation have played a key role to address these challenges and maximize insight

Studying transmission from incomplete data

- Household transmission studies.
- Progressively adding more complexity to the analysis:
 - Missing data issues.
 - Complex social structures.
 - > Space.
 - Repeated measurements.
- Different pathogens:
 - Seasonal and pandemic influenza;
 - Chikungunya and dengue.
- Future directions.

Study of influenza transmission in French households [Cauchemez et al, Stat Med, 2004; Ferguson et al, Nature 2005]

Follow-up of symptoms in 334 households for 15 days after onset in a confirmed index case

Transmission model and likelihoodbased inference from complete data

Model for the hazard of infection of individual s at time t in the household:

$$\lambda_{s}(t) = \alpha_{s} + \sum_{i \in I(t)} \beta_{i}$$
Hazard of
infection outside
household Force of infection exerted by
infectious household
members

Inference from incomplete data (1)

- Infectious periods are unknown we just observe dates of symptom onset;
- Explore trajectories consistent with data on symptoms onset.

Inference from incomplete data (2)

• Notations:

- Y: observed data dates of symptom onset
- Z: "missing" (augmented) data dates when infectivity starts and when it ends;

 \geq θ : parameters

• Three-level hierarchical model:

• Joint posterior distribution of augmented data and parameters explored via MCMC.

Transmission of seasonal influenza in French

households [Cauchemez et al, Stat Med, 2004; Ferguson et al, Nature 2005]

Key transmission parameters: the generation time

- Substantially shorter than initially thought (2.6 vs 4.1 days)
- Important implications for control

Household studies for early assessment during the 2009 H1N1 pandemic [Cauchemez et al, NEJM 2009]

Collaboration with CDC – Follow-up of 216 households for 7 days

Transmission risks within households

Children twice more susceptible than adults

Need for more developments

Households are not isolated from the rest of the world!

Transmission in other settings: A school outbreak of pandemic influenza in 2009 [Cauchemez et al, PNAS, 2011]

- Demographic & clinical information collected on students and their family members – 2 phone interviews:
 - 370 students,
 - 899 household members.
- Surveys in school for 4th graders:
 - Activities,
 - · Seating charts,
 - Playmates.

Seating charts

Epidemic curve

Statistical model

Transmission rates in the school and in the household

Gender-related mixing & transmission patterns

Social networks: Students are 4 times more likely to play with students of the same gender

Evidence that this aspect of mixing patterns affected the transmission dynamics i) Boys had onset before girls! (p=0.023)

ii) Bayes Factor for model with gender-effect: 8.0

Was influenza transmission different 100 years ago? Pandemic flu in Kelly Island, 1920 (C. Armstrong)

- Isolated island, 689 inhabitants;
- Epidemic period: 24 Jan 16 Feb 1920.
- Investigation begins 19 Feb 1920.
- Demographic, clinical and contact information collected on the 689 inhabitants of the island.

Known contact for first

Seating charts

-			m or a de		A 1997 March 1997 March 1997		
	High School and 7th and 8th				,@ ₂₉	Õ	Ų
		୍ତୁ	3	8	3.		
Ш		3.	\otimes_{n}	0	0	0	ά
\	0		$O_{1-\frac{1}{2}}$	0	() -)#	0	Ī
h	. <u>e</u> ,	0	0	Ø,	0	0	h
	<u>s</u> ,	0		0	0	3	Y
	<u>s</u> ,	Ø,	,9,	0	0,1	0	
Ш	0	0	3	8.	0	9	Q
/	8	() 1-25	8	0	1-20	2	
h							h
6							

Additional difficulty: Individual records have been destroyed

- No individual level records available, even after Armstrong's daughter examined his personal effects.
- However, some person specific, and a lot of marginal data available in the paper
 - Epidemic curves for different types of cases e.g. students/others, first case in HH...
 - Whether first case in each HH is a student,
 - Know contact for first case in family,
 - Age and sex distribution of cases,
 - Generation times in HH,
 - General census info on HH structure...

TABLE XIII.—Summary of 27 known contacts followed by influenza, Kelleys Island 1920

Additional difficulty : Individual records have been destroyed (2)

Solution: Multiple imputation of assignments of reported cases to HHs that fulfill marginal constraints

Method 1: Exhaustive deterministic search of assignment space

- Unknown if there are contradictory constraints (full search needed to be sure)
- Even with efficient constraint propagation, no valid assignment of even 1/3 of households after >400,000,000 assignments considered (>4 days compute time),

Method 2: Probabilistic search

- Ensuring good match of marginal distributions.
- MCMC and data augmentation.
- Convergence in <5 minutes (~5000 iterations).

Attack rates by age group

2009

Probability of transmission in the class

Probability of transmission in the household

Sensitivity analysis: reconstruction of individuals records

Person-to-person transmission in the school

Person-to-person transmission in a household of size 3

Spread of chikungunya in a village in Bangladesh [Salje et al, PNAS, 2016]

Transmission rates in households and as a function of distance

Where does transmission occur?

Characterizing infection burden and antibody dynamics from repeated measurements [Salje et al, Nature 2018]

Dengue antibody titers measured every 3 months in >3000 Thai children

When were these individuals infected?

Methods

- Bayesian hierarchical model characterizing antiboby titers in individuals:
 - > A model describing the history of infection.
 - > A model describing antibody titer dynamics given history of infection.
 - > A model describing measurement errors.
- Reversible jump MCMC used for inference.

Characterizing subclinical infections

- 65% of infections subclinical.
- 34% of subclinical infections due to serotype 4 while serotype 4 only represents 3% of symptomatic infections.
- Lower risk to develop symptoms for serotype 4.

Antibody titer dynamics

Primary infection, infecting serotype

Post-primary infection

Correlates of protection and of severity

Conclusions

- Household transmission studies:
 - Within household transmission vs community transmission.
 - Many other insights...
 - ✓ Flu in France, US...
- Progressively added more features to these analyses:
 - Missing data problems
 - ✓ Lost individual records.
 - More complex social structures & space
 - ✓ School settings.
 - ✓ Community outbreaks.
 - Repeated measurements
 - ✓ Dengue cohort.
- Stricking similarities in some of the fundamental parameters that govern spread.
- But nonetheless, transmission rates are highly variable:
 - Social structures, contact networks, distance;
 - Spatial heterogeneities.
- Further developments:
 - Inclusion of contact data;
 - Model comparison.

Acknowledgements

- Institut Pasteur (France): H. Salje, A. Cousien, Q. Ten Bosch, A. Andronico.
- Imperial College London (UK): N. Ferguson, C. Donnelly, A. Ghani.
- Big Data Institute (UK): C. Fraser.
- CDC (USA): L. Finelly, D. Swerdlow, C. Reed, A. Bhattarai.
- Pennsylvania Department of Health (USA): S. Ostroff
- ICDDR,B (Bangladesh): Emily Gurley, KK Paul.
- Standford University (USA): SP Luby.
- WHO: M. Van Kerkhove.
- Johns Hopkins University (USA): J. Lessler.
- University of Florida (USA): D. Cummings.
- INSERM (France): F. Carrat, P.Y. Boëlle, G. Thomas, A.J. Valleron.
- Oxford University (UK): P. Horby, A. Fox.

Thank you!

