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Crop protection

SUSTAINABLE
DEVELOPMENT

GLALS

@ Population & food demand are increasing
“By 2050, global agricultural production must increase by 70% [...] to meet the
demand from a population of 9 billion” [FAO]

@ Crop pests, diseases and weeds threaten food security
20—40% of crop yields destroyed every year

@ Agriculture is a major sector for employment and revenues in many
(developing) countries
nearly 80% of working poor live in rural areas [FAO] DI

= Controlling crop pests is a major issue

@ Chemical pesticides:
o negative impact on human health & the environment
o variable effectiveness, induce pest resistance
o high financial and labour costs

= Need for sustainable control methods
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Sustainable crop protection methods

Alternatives to chemical pesticides

@ Physical methods: traps, soil solarisation...

@ Cultural practices: rotation, strip-cropping, destruction of residues,
fallow, stump pruning...

@ Biocontrol agent releases:
o biopesticides: micro-organisms (bacteria, fungi, viruses),
bio-derived chemicals (pheromones...)
o macro-organisms: predators, parasites
o sterile insect technique

@ Plant resistance deployment:
o qualitative (gene-for-gene / complete)
o quantitative (polygenic / partial) resistance
o plant tolerance
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an
infectious disease in a population, where individuals are:

Susceptible = healthy, naive

Exposed = infected, latent, non infectious
Infected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

B =« W
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Compartmental models to represent the dynamics (progression over time) of an
infectious disease in a population, where individuals are:

Susceptible = healthy, naive

Exposed = infected, latent, non infectious
Infected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model
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S=— B1S force of infection 3/
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an
infectious disease in a population, where individuals are:

Susceptible = healthy, naive

Exposed = infected, latent, non infectious

Infected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

B - - E

S=-p3I8
E=p8IS—aE latency period 1/c

I =aE
R =
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an
infectious disease in a population, where individuals are:

Susceptible = healthy, naive

Exposed = infected, latent, non infectious

Infected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

S=-p3I8
E=p31S—aE
I=aE —~I duration of infectiousness1/~y

I.?:'yl
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an
infectious disease in a population, where individuals are:

Susceptible = healthy, naive

Exposed = infected, latent, non infectious

Infected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

d

S= —BIS+6R
E=p31S—aE
.I:aEf'yl

R=~I—-6R duration of immunity1/§
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an
infectious disease in a population, where individuals are:

Susceptible = healthy, naive

Exposed = infected, latent, non infectious
Infected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

d

S= —-pIS+4R Constant population: P = S(t) + E(t) + I(t) + R(t)
E=pIS—aE Equilibria (S = E = 1= R = 0):
I=aE —~I o disease-free (DFE): S* =P, E* =" =R* =0

R—~l—sR o endemic (with disease) if v < BP
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Basic reproduction number Rg

Number of secondary cases generated by an average index case during its entire
infectious period, when introduced in a fully susceptible population

Ry is a threshold (DFE local stability)
@ Ry < 1 — no epidemic, infection cannot settle in

@ Ry > 1 — epidemic

SEIR model - R0=0.5

—S
E.g. SEIRS model ] E
16 —
r.— PP —R
0= y 124
If Ro < 1 : stable DFE w0
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0 T y y y

T T )
0 20 40 60 80 100 120 140
time
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Basic reproduction number Rg

Number of secondary cases generated by an average index case during its entire
infectious period, when introduced in a fully susceptible population

Ry is a threshold (DFE local stability)

@ Ry < 1 — no epidemic, infection cannot settle in
@ Ry > 1 — epidemic

SEIR model - RO=1.1

—S
E.g. SEIRS model e E
16 - —
r.— PP —R
0= y 124
If Ro < 1 : stable DFE Ch
84
If Rg >1:

o unstable DFE
o endemic equilibrium
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Basic reproduction number Rg

Number of secondary cases generated by an average index case during its entire
infectious period, when introduced in a fully susceptible population

Ry is a threshold (DFE local stability)
@ Ry < 1 — no epidemic, infection cannot settle in
@ Ry > 1 — epidemic

SEIR model - RO=2

E.g. SEIRS model

8P
El
If Ro < 1: stable DFE
If Rg >1:

o unstable DFE o]
o endemic equilibrium

Ro =
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Basic reproduction number Rg

Number of secondary cases generated by an average index case during its entire
infectious period, when introduced in a fully susceptible population

Ry is a threshold (DFE local stability)

@ Ry < 1 — no epidemic, infection cannot settle in
@ Ry > 1 — epidemic

SEIR model - RO=5

—S
E.g. SEIRS model e E
16 - —
r.— PP —R
0= y 124
If Ro < 1 : stable DFE Ch
84
If Rg >1:

o unstable DFE
o endemic equilibrium
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Plant epidemiology

Epidemiological models for human populations, but also animal and plant populations

Plant & crop specificities

© INRAE / SLAGMLDER Christian ‘ © INRE / NICOLAS Bertrand : IRE / DELOURE Régine

@ Plants affected by diseases and pests: grazers, phytophagous insects...

@ Plants don’t move: “contacts” via vectors, wind, water, free-living pathogen stages...
@ Plants usually don’t recover, but variable susceptibility

@ Crops managed by humans: planting, harvest, partial environmental control...

@ Seasonality plays an important role in annual & perennial crops
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Approach

Design and analyse epidemiological models to:

o better understand plant—parasite interactions
o predict the evolution of damages
o provide efficient and sustainable control strategies to limit damages and crop losses

Tools: optimisation and control theory
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Approach

Design and analyse epidemiological models to:

o better understand plant—parasite interactions
o predict the evolution of damages
o provide efficient and sustainable control strategies to limit damages and crop losses

Tools: optimisation and control theory

Different pathosystems
o single or multiple cropping seasons
o spatial scale:

3 ko] °

g kS < b
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plant greenhouse under cover field landscape
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e Optimising cultural practices — Banana burrowing nematodes

PhD (2021): Israél TANKAM CHEDJOU

Frédéric GROGNARD, Jean Jules TEWA + Ludovic MAILLERET
Optimal biopesticide-based control — Coffee berry borer

Self-financing model for cabbage crops with pest management
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a burrowing atodes (Radopholus similis)

5 :
- A: [Jesus, Agron Sustain Dev 2014]; B: M. MacClure, Univ. Arizona; C: [Zhang, EJPP 2012]
@ Banana, including plantain: major staple food — Cameroon: 2% GDP
Burrowing nematodes develop, feed and reproduce in roots
Severe crop losses (up to plant toppling)

Control

chemical nematicides: harmful to environment and human health
cropping practices (soil sanitation)

biological control: limited options

tolerant or resistant banana cultivars

o
[e)
o
o
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a burrowing atodes (Radopholus similis)

s ) ;
B A: [Jesus, Agron Sustain Dev 2014]; B: M. MacClure, Univ. Arizona; C: [Zhang, EJPP 2012]
@ Banana, including plantain: major staple food — Cameroon: 2% GDP
@ Burrowing nematodes develop, feed and reproduce in roots
Severe crop losses (up to plant toppling)

Control

chemical nematicides: harmful to environment and human health
cropping practices (soil sanitation): fallow

biological control: limited options

tolerant or resistant banana cultivars

o
[e)
o
o

How best to implement fallows to limit pest damages and preserve yield?

J
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Model: initialisation

New sucker

Q

5(0) = Sy, plant root
X(0) =0 nematodes in root

P(0) = P, nematodes in soil

Hypotheses:
@ nursery-grown pest-free sucker (no asexual reproduction by offshoots)
@ no male nematodes (not infective & not necessary for reproduction)
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Model: cropping season

flowering t 1ck
[ | | | >
' root growth I fruit growth | .
tr tr

o(1-X/K) E S

XD

P>

root growth

5=p0)S(1-3)
X =
P

MOVI 2024 - S. Touzeau 11/28



Model: cropping season

) flowering t 1ck
[ | | | >
' root growth I fruit growth | .

tr tr

p(1-XK) [ S
XD
BS
root growth
S=o(tys(-3)
K

X= + B8PS

P= ~-BPS
root entering
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Model: cropping season
) L ﬂow?ring t : icke

J root growth
) tr

1-X/K S
P9 L—’ SX/(S+4)
X O
BS a
12
1y

root growth

S=p(t)S(1 -
X =

po
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root consumption
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Model: cropping season
ﬂowlering

root growth I fruit growth |
tr tr

p(1xK) [

BS

S 8X/(S+A)
+.
X
/ a
Y
1-y
root growth root consumption
: S SX
S=n0)S(1- ) 9%ta
: SX
X = + B8PS +6S+Aa’y —uX
: SX
P= -BPS +5§ a(l—-v) —-wP
S+A mortality

root enterin
9 feeding & reproduction
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Model: harvest

harvest

tr 77

S(tH)y=0
X(t)=0
P(5") = P(t) + q X(tr)

Hypothesis: some infested roots remain in soil at uprooting
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Model: fallow

o O

S
X
P
Hypothesis: no alternative hosts for nematodes during fallow
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Model: new sucker

New sucker

¢
|

X0

S(TH) =S
X(TH)=0
P(T") = P(T) = (P(t) + g X(t}))e "

Hypothesis: new nursery-grown pest-free sucker
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Model: new sucker

New sucker

¢
|

X0

S(TH) =S
X(TH)=0
P(T") = P(T) = (P(t) + g X(t}))e "

Hypothesis: new nursery-grown pest-free sucker

Etc. for the next seasons
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Optimal fallow deployment

New sucker flowering harvest New sucker flowering harvest
| | L ____] | l__ _I_ ...... {_>
| I i I I I |
root growth fruit growth ! fallow
0 tr tr T1 Ti+tr Ti+tr 2 T2 T
T1 T max

@ Seasonal yield proxy: Y; = ftff w S(t)dt
@ Cost of a pest-free sucker: ¢
@ Seasonal profit: R = Y — ¢
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Optimal fallow deployment

Nelew sucker flowering harvest New sucker flowering harvest
| | | | |
I i R | | T R
root growth fruit growth ! fallow
0 tr tr T1 T1 Ti+tr Ti+tr 2 T2 Tmax

@ Seasonal yield proxy: Y; = ftff w S(t)dt
@ Cost of a pest-free sucker: ¢
@ Seasonal profit: R = Y — ¢

Optimisation problem

Determine the number and duration of fallow periods (7;) which
maximise the cumulated profit on a fixed multi-seasonal time horizon (Tmax):

N
maxz F?,'(Tj_’/‘<,')
=

Numerical method: Adaptive Random Search algorithm
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Optimal fallow deployment

Admissible fallows (7;) such that last cropping season ends at Tmax, €.9.:

tr T1 L tr L T2 tr
I—i' “““ I | I

1
o 1! T 2 T 3 Tz 4 Tmax

=y

Maximum number of fallows: Nmax = V?/J -1

Optimal fallows

N
o
o

—_
a
o

I no constraint

1. Forn=1,..., Nmax
bounded fallows (< 60 days)

optimisation over n-simplex:
S 7= Tmax — (N +1)
— optimal profit R™*

2. Select highest R™ 0 I ™ I I |
1 2 3 4 5 6

7 8 9 10
Fallow number

Fallow duration (days)
g 3

Example for Tmax = 4000 days (Nmax = 11)
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In a nutshell

How best to implement fallows to limit pest damages and preserve yield? )

Fallows can limit nematode infestation and maintain profit
— especially with long fallows early on to sanitise the soil
— but expensive pest-free suckers — follow-up with fallows and natural reproduction

I. Tankam Chedjou et al., 2021. Applied Mathematics and Computation 397:125883.
doi: 10.1016/j.amc.2020.125883

|. Tankam Chedjou et al., 2021. Journal of Interdisciplinary Methodologies and Issues in Science 8 — Digital
Agriculture in Africa. doi: 10.18713/JIMIS-120221-8-4
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In a nutshell

How best to implement fallows to limit pest damages and preserve yield? )

Fallows can limit nematode infestation and maintain profit
— especially with long fallows early on to sanitise the soil
— but expensive pest-free suckers — follow-up with fallows and natural reproduction

I. Tankam Chedjou et al., 2021. Applied Mathematics and Computation 397:125883.
doi: 10.1016/j.amc.2020.125883

|. Tankam Chedjou et al., 2021. Journal of Interdisciplinary Methodologies and Issues in Science 8 — Digital
Agriculture in Africa. doi: 10.18713/JIMIS-120221-8-4

In terms of behavioural epidemiology?

@ basic economic criterion

@ long term optimisation of cultural practices, but
open-loop

One step further: infestation feedback to represent the

grower’s decision (fallow or not fallow, etc.) each season?
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Optimising cultural practices — Banana burrowing nematodes

e Optimal biopesticide-based control — Coffee berry bore

PhD (2022): Yves FoTso FOTSO
Samuel BOWONG, Frédéric GROGNARD, Berge TSANOU

Self-financing model for cabbage crops with pest management
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Coffee berry borers (Hypothenemus hampei)

Uccao Cameroun
[Burbano, JIS 2011]

@ Coffee: cash crop for tropical developing countries — 25 million households [FAO]
@ CBB: mostly develop and feed in coffee berries
@ In all production countries, economic losses > 500 million $/year

@ Control

o chemical insecticides: poorly efficient (cryptic pest)

o trapping

o cropping practices: strip-picking, stump pruning

o biological control: parasitoid or predator insects,
entomopathogenic fungi
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Coffee berry borers (Hypothenemus hampei)

Uccao Cameroun
[Burbano, JIS 2011]

@ Coffee: cash crop for tropical developing countries — 25 million households [FAO]
@ CBB: mostly develop and feed in coffee berries
@ In all production countries, economic losses > 500 million $/year

@ Control

o chemical insecticides: poorly efficient (cryptic pest)

o trapping

o cropping practices: strip-picking, stump pruning

o biological control: parasitoid or predator insects,
entomopathogenic fungi (Beauveria bassiana)

A. Ramirez

How best to apply a biopesticide to control CBB during a growing season? )
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Single season model

S= healthy berries

i= infested berries

y = colonising ¢ (¢ not limiting)
z= infesting ¢
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Single season model

new berries
S= A healthy berries
i= infested berries
y = colonising ¢ (¢ not limiting)
z= infesting ¢
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Single season model

infestation

new berries

S= A — B 24 healthy berries
Y+ as

sy
Y+ as

Sy
Y+ as

Sy
Y+ as

i= + 8 infested berries

y= - el colonising ¢ (d" not limiting)

z= + ep infesting ¢
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Single season model

infestation

new berries

S= A — B 4 healthy berries
Y+ as

sy
y+as

4
Y+ as

Sy
Y+ as

i= + B infested berries

emergence

y= vz - B

colonising ¢ (¢ not limiting)

z= + el infesting ¢
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Single season model

. infestation .
new berries sy mortality
S= A — B —us healthy berries
Y+ as
i= + 8—Y _ _,i infested berries
y+as
emergence S_y
y = z - - colonisin d not limitin
y @ el Y+ as HyY 99 9)
. sy , .
zZ= — uzz  infestin
+ ep Y +as Hz ge
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Single season model

infestation

new berries sy mortality
s= A —oa(v) By T as —us healthy berries
i= vov) B—Y i infested berries
N y+as Hi
emergence S_y I
y = — — lonisi d not limitin
y pz a(v)eﬂy +as wuyy  colonising 9 ( imiting)
o sy . .
z= + o(v)sﬂy T as uzz  infesting @
v= h(t) —yv fungus load

control decay
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Single season model

. infestation .
new berries mortality

s= AN —ov)B 24

ytas —ps healthy berries

emergence
. _ g B s »” I
y pz a(v)eﬂy +as wuyy  colonising @ (d" not limiting)
o sy . .
zZ= + o(v)sﬂy T as uzz  infesting ¢
v= h(t) —yv fungus load

control decay
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Optimal control

Optimal control problem
Determine the entomopathogenic fungus application h(t)
maximising the yield at the end of the cropping season s(t),

J(h) = ¢s s(t)

yield

MOVI 2024 - S. Touzeau
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Optimal control

Optimal control problem
Determine the entomopathogenic fungus application h(t)
maximising the yield at the end of the cropping season s(t),
while minimising the control cost (+»> maximise profit)

T =costt) - [ crat

yield cost
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Optimal control

Optimal control problem
Determine the entomopathogenic fungus application h(t)
maximising the yield at the end of the cropping season s(t),
while minimising the control cost (<> maximise profit)
& the CBB population for the next growing season y(t):

Ity = Gesit) - [ " Chtyt - ¢ y(t)

yield cost penalty
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Optimal control

Optimal control problem
Determine the entomopathogenic fungus application h(t)
maximising the yield at the end of the cropping season s(t),
while minimising the control cost (+» maximise profit)
& the CBB population for the next growing season y(f):

T(h) = s s(t) - / "Ch(tydt— ¢, y(t)

0
yield cost penalty

Pontryagin’s Maximum Principle: bang-singular-bang solution

Numerical method: BOCOP
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Optimal control

h [g/day]

y [females]

Fungus application

x10% Healthy coffee berries

30
no pest
@ e
@ £ e
S s P i Sptimal control
10 @ L e T TTT no control
ol ! ! | | : : : | |
0 50 100 150 200 250 50 100 150 200 250
Time (days) Time (days)
.5 x10° Colonising females
g = Efficient biopesticide control:
10 e o CBB population halved
. .- o penalised profit 7 doubled
0 - - - - .
0 50 100 150 200 250
Time (days)
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In a nutshell

How to best apply a biopesticide to control CBB during a growing season? )

— Optimal control gives a rough idea of how to apply pest control: start high
— Extension with 2 controls: biopesticide + traps

Y. Fotso Fotso et al., 2021. Mathematical Methods in the Applied Sciences 44(18):14569—-14592.
doi: 10.1002/mma.7726

Y. Fotso Fotso et al., 2023. Journal of Optimization Theory and Applications 196(3):882—899.
doi: 10.1007/s10957-022-02151-7

A. Ramirez
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In a nutshell

How to best apply a biopesticide to control CBB during a growing season? )

— Optimal control gives a rough idea of how to apply pest control: start high
— Extension with 2 controls: biopesticide + traps

Y. Fotso Fotso et al., 2021. Mathematical Methods in the Applied Sciences 44(18):14569—-14592.
doi: 10.1002/mma.7726

Y. Fotso Fotso et al., 2023. Journal of Optimization Theory and Applications 196(3):882—899.

doi: 10.1007/s10957-022-02151-7
In terms of behavioural epidemiology?

@ basic economic criterion

@ optimal control(s), but open-loop and short term

Some steps further:

— feedback for grower’s decision

— information on local/regional prevalence

— risk perception to determine between-season controls
(strip-picking, etc.)

N
o
£
5]
o
<
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Optimising cultural practices — Banana burrowing nematodes
Optimal biopesticide-based control — Coffee berry borer
e Self-financing model for cabbage crops with pest management

Ongoing PhD: Aurelien KAMBEU YOUMBI

INRAD

Frédéric GROGNARD, Berge TSANOU
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ndback moth (Plutella xylostella)

Alton N. Sparks, Jr

~ Andrew Weeks

@ Cabbages (Brassica oleracea): important staple food and source of income for
smallholder farmers

@ DBM: cosmopolitan insect, whose larvae graze mostly on cabbage plants

@ Major pest, especially in regions with mild winters

@ Control
o chemical pesticides = moth resistance — botanical pesticides
o cultural practices: inter-cropping, rotation...
o biological control: parasitoid wasps
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ndback moth (Plutella xylostella)

%

~ Andrew Weeks

@ Cabbages (Brassica oleracea): important staple food and source of income for
smallholder farmers
@ DBM: cosmopolitan insect, whose larvae graze mostly on cabbage plants

@ Major pest, especially in regions with mild winters
@ Control
o chemical pesticides = moth resistance — botanical pesticides

o cultural practices: inter-cropping, rotation...
o biological control: parasitoid wasps

How should a smallholder farmer best use the cabbage crop revenues?

Alton N. Sparks, Jr

MOVI 2024 - S. Touzeau
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Self-financing model

Crop: By young biomass (susceptible) & B, adult biomass (resistant)
: L larva population (fast life cycle)
Pest control: P botanical pesticide (with antifeedant effect)
Money: M plantation current account & T grower’s cumulated earnings

© -
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Self-financing model

Crop: By young biomass (susceptible) & B, adult biomass (resistant)
: L larva population (fast life cycle)
Pest control: P botanical pesticide (with antifeedant effect)
Money: M plantation current account & T grower’s cumulated earnings

3 2
By = ryBy — uyBy — By
cabbage growth & ageing
Ba = raBa — paB2 + B,
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Self-financing model

Crop: By young biomass (susceptible) & B, adult biomass (resistant)
: L larva population (fast life cycle)
Pest control: P botanical pesticide (with antifeedant effect)
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Self-financing model

Crop: By young biomass (susceptible) & B, adult biomass (resistant)
: L larva population (fast life cycle)
Pest control: P botanical pesticide (with antifeedant effect)
Money: M plantation current account & T grower’s cumulated earnings

grazing
3 PYLBy
B, = r,B, — u,B% — ~B, —
y = 1yBy —myBy =8y = 57
cabbage growth & ageing
Ba = raBa — naB5 + 7By
larva mortality recruitment
[ LBy
L= vl —wl? —coPL+c
vib = LpPL+ cp bR L1
. larva uptake
P= —¢PL
M=
T=
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Self-financing model

Crop: By young biomass (susceptible) & B, adult biomass (resistant)
: L larva population (fast life cycle)
Pest control: P botanical pesticide (with antifeedant effect)
Money: M plantation current account & T grower’s cumulated earnings

grazing
: YLBy
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cabbage growth & ageing
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Self-financing model

Crop: By young biomass (susceptible) & B, adult biomass (resistant)
: L larva population (fast life cycle)
Pest control: P botanical pesticide (with antifeedant effect)
Money: M plantation current account & T grower’s cumulated earnings

grazing
YLBy
bP +1

By = 1yBy — nyBj — vBy —

cabbage growth & ageing
harvest

Ba = raBa— #aBg +vBy — hBa

larva mortality recruitment
' VLB,
L= vl —pl? —coPL+c
VLE T HL LOPL+ Cpp o
. larva uptake decay
P= —¢PL —upP
. revenue
M = cghBa
T=
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Self-financing model

Crop: By young biomass (susceptible) & B, adult biomass (resistant)
: L larva population (fast life cycle)
Pest control: P botanical pesticide (with antifeedant effect)
Money: M plantation current account & T grower’s cumulated earnings

grazing

: YLBy
By =r,By — B2 — 4B, — + oy,
y yBy — kyBy — by bP + 1 mUp
cabbage growth & ageing
harvest

Ba = raBa— #aBg +vBy — hBa

. larva mortality feCTUitingnt
= L - l? — G éPL+ gy 2=

BbP + 1
. larva uptake decay
P= —¢PL —uvpP +cyup
T . revenue
M = cghBa — (ug + up + ur)
T = ur
Automatic controls: ug new seedlings, up protection costs, and ur net income
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Self-financing model

Crop: By young biomass (susceptible) & B, adult biomass (resistant)
: L larva population (fast life cycle)
Pest control: P botanical pesticide (with antifeedant effect)
Money: M plantation current account & T grower’s cumulated earnings

grazing

: YLBy
By =r,By — B2 — 4B, — + oy,
y yBy — kyBy — by bP + 1 mUp
cabbage growth & ageing
harvest

Ba = raBa— #aBg +vBy — hBa

. larva mortality feCTUitingnt
= L - l? — G éPL+ gy 2=

BbP + 1
. larva uptake decay
P= —¢PL —upP +ciyup
T . revenue
M = cghBa — (ug + up + ur)
T = ur

Automatic controls: ug new seedlings, up protection costs, and ur net income

A. Kambeu Youmbi et al., 2024. Preprint. HAL Id: hal-04589904
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Optimisation

Optimisation problem

Determine controls ug new seedlings, up protection costs, and ur net income to
maximise the total earnings, i.e. the final T.

@ Static optimisation

®
’ﬁﬁ @ Open-loop or feedback controls

e @ Discrete controls
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Conclusion

@ Modelling crop pests and diseases + ecofriendly control strategies
— insights in sustainable control deployment

@ Some (necessary) simplifications: no abiotic factors, single pest, open-loop control...

@ A few challenges (still):

o “small data” — link with remote sensing?
o growers’ decisions — behavioural epidemiology?
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@ Modelling crop pests and diseases + ecofriendly control strategies
— insights in sustainable control deployment

@ Some (necessary) simplifications: no abiotic factors, single pest, open-loop control...

@ A few challenges (still):

o “small data” — link with remote sensing?
o growers’ decisions — behavioural epidemiology?

Work € EPITAG = EPIdemiological modelling and control for Tropical AGriculture

French & Cameroonian researchers and students, with a background in applied mathematics, and
an interest in crop diseases

) Sophi}/‘knﬁpolis ‘ cirad UL") @ ﬁ
/ ' ¥ @ Univ. Dschang 5 4
-1, Cameroon S Joint PhD - b
— supervision
i Univ. Yaoundé | -
“

\\ HRwe S
A aaj Univ. Douala w
More on EPITAG: https://team.inria.fr/epitag/
v
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