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Crop protection

Population & food demand are increasing
“By 2050, global agricultural production must increase by 70% [...] to meet the
demand from a population of 9 billion” [FAO]

Crop pests, diseases and weeds threaten food security
20–40% of crop yields destroyed every year

Agriculture is a major sector for employment and revenues in many
(developing) countries
nearly 80% of working poor live in rural areas [FAO]

➥ Controlling crop pests is a major issue

Chemical pesticides:
◦ negative impact on human health & the environment
◦ variable effectiveness, induce pest resistance
◦ high financial and labour costs

➥ Need for sustainable control methods
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Sustainable crop protection methods

Alternatives to chemical pesticides

Physical methods: traps, soil solarisation...

Cultural practices: rotation, strip-cropping, destruction of residues,
fallow, stump pruning...

Biocontrol agent releases:
◦ biopesticides: micro-organisms (bacteria, fungi, viruses),

bio-derived chemicals (pheromones...)
◦ macro-organisms: predators, parasites
◦ sterile insect technique

Plant resistance deployment:
◦ qualitative (gene-for-gene / complete)
◦ quantitative (polygenic / partial) resistance
◦ plant tolerance
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an

infectious disease in a population, where individuals are:

Susceptible = healthy, naive
Exposed = infected, latent, non infectious
Infected = infectious
Recovered = immune, resistant / removed

E.g. SEIRS model

E(t)S(t) I(t) R(t)
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Ṡ = − βI S force of infection βI
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an

infectious disease in a population, where individuals are:

Susceptible = healthy, naive
Exposed = infected, latent, non infectious
Infected = infectious
Recovered = immune, resistant / removed

E.g. SEIRS model

E(t)S(t) I(t) R(t)
Iβ α



























Ṡ = − βI S

Ė = βI S − αE latency period 1/α

İ = αE

Ṙ =
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an

infectious disease in a population, where individuals are:

Susceptible = healthy, naive
Exposed = infected, latent, non infectious
Infected = infectious
Recovered = immune, resistant / removed

E.g. SEIRS model

E(t)S(t) I(t) R(t)
Iβ α γ



























Ṡ = − βI S

Ė = βI S − αE

İ = αE − γI duration of infectiousness1/γ

Ṙ = γI
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an

infectious disease in a population, where individuals are:

Susceptible = healthy, naive
Exposed = infected, latent, non infectious
Infected = infectious
Recovered = immune, resistant / removed

E.g. SEIRS model

E(t)S(t) I(t) R(t)
Iβ α γ

δ



























Ṡ = − βI S + δR

Ė = βI S − αE

İ = αE − γI

Ṙ = γI − δR duration of immunity1/δ
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Epidemiological modelling

Compartmental models to represent the dynamics (progression over time) of an

infectious disease in a population, where individuals are:

Susceptible = healthy, naive
Exposed = infected, latent, non infectious
Infected = infectious
Recovered = immune, resistant / removed

E.g. SEIRS model

E(t)S(t) I(t) R(t)
Iβ α γ

δ



























Ṡ = − βI S + δR

Ė = βI S − αE

İ = αE − γI

Ṙ = γI − δR

Constant population: P = S(t) + E(t) + I(t) + R(t)

Equilibria (Ṡ = Ė = İ = Ṙ = 0):

◦ disease-free (DFE): S∗ = P, E∗ = I∗ = R∗ = 0
◦ endemic (with disease) if γ < βP
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Basic reproduction number R0

Number of secondary cases generated by an average index case during its entire

infectious period, when introduced in a fully susceptible population

R0 is a threshold (DFE local stability)

R0 < 1 → no epidemic, infection cannot settle in

R0 > 1 → epidemic

E.g. SEIRS model

R0 =
βP

γ

If R0 < 1 : stable DFE
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Plant epidemiology

Epidemiological models for human populations, but also animal and plant populations

Plant & crop specificities

Definition of a (healthy/infected) individual: plant/tree, (part of) leaf, root, fruit...?

© INRAE / SLAGMULDER Christian © INRAE / NICOLAS Bertrand © INRAE / DELOURME Régine

Plants affected by diseases and pests: grazers, phytophagous insects...

Plants don’t move: “contacts” via vectors, wind, water, free-living pathogen stages...

Plants usually don’t recover, but variable susceptibility

Crops managed by humans: planting, harvest, partial environmental control...

Seasonality plays an important role in annual & perennial crops
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Approach

Design and analyse epidemiological models to:
◦ better understand plant–parasite interactions
◦ predict the evolution of damages
◦ provide efficient and sustainable control strategies to limit damages and crop losses

Tools: optimisation and control theory
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Approach

Design and analyse epidemiological models to:
◦ better understand plant–parasite interactions
◦ predict the evolution of damages
◦ provide efficient and sustainable control strategies to limit damages and crop losses

Tools: optimisation and control theory

Different pathosystems
◦ single or multiple cropping seasons
◦ spatial scale:
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plant greenhouse under cover field landscape
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1 Optimising cultural practices – Banana burrowing nematodes

PhD (2021): Israël TANKAM CHEDJOU

Frédéric GROGNARD, Jean Jules TEWA + Ludovic MAILLERET

2 Optimal biopesticide-based control – Coffee berry borer

3 Self-financing model for cabbage crops with pest management
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Banana burrowing nematodes (Radopholus similis)
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A: [Jesus, Agron Sustain Dev 2014]; B: M. MacClure, Univ. Arizona; C: [Zhang, EJPP 2012]

Banana, including plantain: major staple food – Cameroon: 2% GDP

Burrowing nematodes develop, feed and reproduce in roots

Severe crop losses (up to plant toppling)

Control
◦ chemical nematicides: harmful to environment and human health
◦ cropping practices (soil sanitation)
◦ biological control: limited options
◦ tolerant or resistant banana cultivars
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A: [Jesus, Agron Sustain Dev 2014]; B: M. MacClure, Univ. Arizona; C: [Zhang, EJPP 2012]

Banana, including plantain: major staple food – Cameroon: 2% GDP

Burrowing nematodes develop, feed and reproduce in roots

Severe crop losses (up to plant toppling)

Control
◦ chemical nematicides: harmful to environment and human health
◦ cropping practices (soil sanitation): fallow
◦ biological control: limited options
◦ tolerant or resistant banana cultivars

How best to implement fallows to limit pest damages and preserve yield?
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Model: initialisation

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf Tτ

New sucker

S

X

P















S(0) = S0 plant root

X (0) = 0 nematodes in root

P(0) = P0 nematodes in soil

Hypotheses:

nursery-grown pest-free sucker (no asexual reproduction by offshoots)

no male nematodes (not infective & not necessary for reproduction)
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Model: cropping season

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf Tτ

New sucker

S

X

P

ρ(1-X/K)















































Ṡ =

root growth

ρ(t) S
(

1 −
S

K

)

Ẋ =

Ṗ =
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Model: cropping season

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf Tτ

New sucker

S

X

P

ρ(1-X/K)

βS















































Ṡ =

root growth

ρ(t) S
(

1 −
S

K

)

Ẋ = + β P S

Ṗ = − β P S
root entering
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Model: cropping season

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf Tτ

New sucker

S

X

P

ρ(1-X/K)

βS

δX/(S+Δ)

αγ

1-γ















































Ṡ =

root growth

ρ(t) S
(

1 −
S

K

)

root consumption

− δ
S X

S +∆

Ẋ = + β P S + δ
S X

S +∆
α γ

Ṗ = − β P S
root entering

+ δ
S X

S +∆
α (1 − γ)

feeding & reproduction
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Model: cropping season

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf Tτ

New sucker

S

X

P

ρ(1-X/K)

βS

δX/(S+Δ)

αγ

1-γ

ω μ















































Ṡ =

root growth

ρ(t) S
(

1 −
S

K

)

root consumption

− δ
S X

S +∆

Ẋ = + β P S + δ
S X

S +∆
α γ − µ X

Ṗ = − β P S
root entering

+ δ
S X

S +∆
α (1 − γ)

feeding & reproduction

− ω P
mortality

MOVI 2024 – S. Touzeau 11 / 28



Model: harvest

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf Tτ

New sucker

X

S

P















S(t+f ) = 0

X (t+f ) = 0

P(t+f ) = P(tf ) + q X (tf )

Hypothesis: some infested roots remain in soil at uprooting
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Model: fallow

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf Tτ

New sucker

X

S

P
ω















Ṡ = 0

Ẋ = 0

Ṗ = −ω P

Hypothesis: no alternative hosts for nematodes during fallow
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Model: new sucker

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf Tτ

New sucker

S

X

P















S(T+) = S0

X (T+) = 0

P(T+) = P(T ) =
(

P(tf ) + q X (tf )
)

e
−ω τ

Hypothesis: new nursery-grown pest-free sucker
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Model: new sucker

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf Tτ

New sucker

S

X

P















S(T+) = S0

X (T+) = 0

P(T+) = P(T ) =
(

P(tf ) + q X (tf )
)

e
−ω τ

Hypothesis: new nursery-grown pest-free sucker

Etc. for the next seasons
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Optimal fallow deployment

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf T1τ1

New sucker

T1+tr T1+tf T2τ2

flowering harvest

Tmax

Seasonal yield proxy: Y1 =
∫ tf

tr
w S(t)dt

Cost of a pest-free sucker: c

Seasonal profit: R1 = Y1 − c
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Optimal fallow deployment

New sucker

root growth

flowering

fruit growth

harvest

fallow
0 tr tf T1τ1

New sucker

T1+tr T1+tf T2τ2

flowering harvest

Tmax

Seasonal yield proxy: Y1 =
∫ tf

tr
w S(t)dt

Cost of a pest-free sucker: c

Seasonal profit: R1 = Y1 − c

Optimisation problem

Determine the number and duration of fallow periods (τi ) which

maximise the cumulated profit on a fixed multi-seasonal time horizon (Tmax):

max
N,τi

N
∑

i=1

Ri(τj, j<i)

Numerical method: Adaptive Random Search algorithm
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Optimal fallow deployment

Admissible fallows (τi) such that last cropping season ends at Tmax , e.g.:

T1 T2 T30

tf τ1 tf τ2 tf τ3

Tmax

tf

1 2 3 4

Maximum number of fallows: nmax =
⌊

Tmax
tf

⌋

− 1

1. For n = 1, . . . , nmax

optimisation over n-simplex:∑n
i=1 τi = Tmax − (n + 1) tf

→ optimal profit Rn⋆

2. Select highest Rn⋆

0

50
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Fallow number
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no constraint

bounded fallows (< 60 days)

Optimal fallows

Example for Tmax = 4000 days (nmax = 11)
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In a nutshell

How best to implement fallows to limit pest damages and preserve yield?

Fallows can limit nematode infestation and maintain profit

– especially with long fallows early on to sanitise the soil
– but expensive pest-free suckers → follow-up with fallows and natural reproduction

I. Tankam Chedjou et al., 2021. Applied Mathematics and Computation 397:125883.
doi: 10.1016/j.amc.2020.125883

I. Tankam Chedjou et al., 2021. Journal of Interdisciplinary Methodologies and Issues in Science 8 – Digital
Agriculture in Africa. doi: 10.18713/JIMIS-120221-8-4
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– especially with long fallows early on to sanitise the soil
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I. Tankam Chedjou et al., 2021. Journal of Interdisciplinary Methodologies and Issues in Science 8 – Digital
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In terms of behavioural epidemiology?

basic economic criterion

long term optimisation of cultural practices, but
open-loop

One step further: infestation feedback to represent the
grower’s decision (fallow or not fallow, etc.) each season?
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1 Optimising cultural practices – Banana burrowing nematodes

2 Optimal biopesticide-based control – Coffee berry borer

PhD (2022): Yves FOTSO FOTSO

Samuel BOWONG, Frédéric GROGNARD, Berge TSANOU

3 Self-financing model for cabbage crops with pest management
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Coffee berry borers (Hypothenemus hampei)
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Coffee: cash crop for tropical developing countries – 25 million households [FAO]

CBB: mostly develop and feed in coffee berries

In all production countries, economic losses > 500 million $/year

Control
◦ chemical insecticides: poorly efficient (cryptic pest)
◦ trapping
◦ cropping practices: strip-picking, stump pruning
◦ biological control: parasitoid or predator insects,

entomopathogenic fungi
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Coffee: cash crop for tropical developing countries – 25 million households [FAO]

CBB: mostly develop and feed in coffee berries

In all production countries, economic losses > 500 million $/year

Control
◦ chemical insecticides: poorly efficient (cryptic pest)
◦ trapping
◦ cropping practices: strip-picking, stump pruning
◦ biological control: parasitoid or predator insects,

entomopathogenic fungi (Beauveria bassiana)
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How best to apply a biopesticide to control CBB during a growing season?
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Single season model

s
i

y

z

ṡ = healthy berries

i̇ = infested berries

ẏ = colonising ~ (| not limiting)

ż = infesting ~
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Single season model

s
i

y

z

Λ

ṡ =
new berries

Λ healthy berries

i̇ = Λ infested berries

ẏ = colonising ~ (| not limiting)

ż = infesting ~
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Single season model

s
i

y

z

Λ β
y+αs

ε

ṡ =
new berries

Λ − σ(v)

infestation

ϵβ
sy

y + αs
healthy berries

i̇ = Λ + σ(v)ϵβ
sy

y + αs
infested berries

ẏ = − σ(v)εβ
sy

y + αs
colonising ~ (| not limiting)

ż = + σ(v)εβ
sy

y + αs
infesting ~
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Single season model

s
i

y

z

Λ β
y+αs

ε

φ

ṡ =
new berries

Λ − σ(v)

infestation

ϵβ
sy

y + αs
healthy berries

i̇ = Λ + σ(v)ϵβ
sy

y + αs
infested berries

ẏ =
emergence

φz − σ(v)εβ
sy

y + αs
colonising ~ (| not limiting)

ż = φz + σ(v)εβ
sy

y + αs
infesting ~
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Single season model

s
i

y

z

Λ β
y+αs

ε

φ
μy

μz

μ
μi

ṡ =
new berries

Λ − σ(v)

infestation

ϵβ
sy

y + αs

mortality

−µs healthy berries

i̇ = Λ + σ(v)ϵβ
sy

y + αs
− µi i infested berries

ẏ =
emergence

φz − σ(v)εβ
sy

y + αs
− µy y colonising ~ (| not limiting)

ż = φz + σ(v)εβ
sy

y + αs
− µzz infesting ~
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Single season model

s
i

y

z

Λ β
y+αs

ε

σ(v)

φ
μy

μz

μ
μi

ṡ =
new berries

Λ − σ(v)

infestation

ϵβ
sy

y + αs

mortality

−µs healthy berries

i̇ = Λ + σ(v)ϵβ
sy

y + αs
− µi i infested berries

ẏ =
emergence

φz − σ(v)εβ
sy

y + αs
− µy y colonising ~ (| not limiting)

ż = φz + σ(v)εβ
sy

y + αs
− µzz infesting ~

v̇ = h(t)
control

−γv
decay

fungus load

1

v0

σ(v)
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Single season model

i
s

i

y

z

Λ β
y+αs

ε

σ(v)

φ
μy

μz

μ
μi

ṡ =
new berries

Λ − σ(v)

infestation

ϵβ
sy

y + αs

mortality

−µs healthy berries

i̇ = Λ + σ(v)ϵβ
sy

y + αs
− µi i infested berries ≃ colonising ~

ẏ =
emergence

φz − σ(v)εβ
sy

y + αs
− µy y colonising ~ (| not limiting)

ż = φz + σ(v)εβ
sy

y + αs
− µzz infesting ~

v̇ = h(t)
control

−γv
decay

fungus load

1

v0

σ(v)
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Optimal control

Optimal control problem

Determine the entomopathogenic fungus application h(t)

maximising the yield at the end of the cropping season s(tf ),

:

J (h) = ζs s(tf )

yield
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Optimal control

Optimal control problem

Determine the entomopathogenic fungus application h(t)

maximising the yield at the end of the cropping season s(tf ),

while minimising the control cost (↔ maximise profit)

:

J (h) = ζs s(tf )

yield

−

∫ tf

0

C h(t) dt

cost
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Optimal control

Optimal control problem

Determine the entomopathogenic fungus application h(t)

maximising the yield at the end of the cropping season s(tf ),

while minimising the control cost (↔ maximise profit)

& the CBB population for the next growing season y(tf ):

J (h) = ζs s(tf )

yield

−

∫ tf

0

C h(t) dt

cost

− ζy y(tf )

penalty
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Optimal control

Optimal control problem

Determine the entomopathogenic fungus application h(t)

maximising the yield at the end of the cropping season s(tf ),

while minimising the control cost (↔ maximise profit)

& the CBB population for the next growing season y(tf ):

J (h) = ζs s(tf )

yield

−

∫ tf

0

C h(t) dt

cost

− ζy y(tf )

penalty

Pontryagin’s Maximum Principle: bang-singular-bang solution

Numerical method: BOCOP
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Optimal control

no pest

no control

optimal control

➥ Efficient biopesticide control:
◦ CBB population halved
◦ penalised profit J doubled
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In a nutshell

How to best apply a biopesticide to control CBB during a growing season?

– Optimal control gives a rough idea of how to apply pest control: start high
– Extension with 2 controls: biopesticide + traps

Y. Fotso Fotso et al., 2021. Mathematical Methods in the Applied Sciences 44(18):14569–14592.
doi: 10.1002/mma.7726

Y. Fotso Fotso et al., 2023. Journal of Optimization Theory and Applications 196(3):882–899.
doi: 10.1007/s10957-022-02151-7
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In terms of behavioural epidemiology?

basic economic criterion

optimal control(s), but open-loop and short term

Some steps further:
– feedback for grower’s decision
– information on local/regional prevalence
– risk perception to determine between-season controls

(strip-picking, etc.)
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1 Optimising cultural practices – Banana burrowing nematodes

2 Optimal biopesticide-based control – Coffee berry borer

3 Self-financing model for cabbage crops with pest management

Ongoing PhD: Aurelien KAMBEU YOUMBI

Frédéric GROGNARD, Berge TSANOU
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Diamondback moth (Plutella xylostella)
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Andrew Weeks

Cabbages (Brassica oleracea): important staple food and source of income for
smallholder farmers

DBM: cosmopolitan insect, whose larvae graze mostly on cabbage plants

Major pest, especially in regions with mild winters

Control
◦ chemical pesticides ⇒ moth resistance – botanical pesticides
◦ cultural practices: inter-cropping, rotation...
◦ biological control: parasitoid wasps
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Cabbages (Brassica oleracea): important staple food and source of income for
smallholder farmers

DBM: cosmopolitan insect, whose larvae graze mostly on cabbage plants

Major pest, especially in regions with mild winters

Control
◦ chemical pesticides ⇒ moth resistance – botanical pesticides
◦ cultural practices: inter-cropping, rotation...
◦ biological control: parasitoid wasps

How should a smallholder farmer best use the cabbage crop revenues?
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Self-financing model

Crop: By young biomass (susceptible) & Ba adult biomass (resistant)

Pest: L larva population (fast life cycle)

Pest control: P botanical pesticide (with antifeedant effect)

Money: M plantation current account & T grower’s cumulated earnings

BaBy

T

L

MP

Ḃy =

Ḃa =

L̇ =

Ṗ =

Ṁ =

Ṫ =
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Ṫ =

MOVI 2024 – S. Touzeau 26 / 28

http://hal.inrae.fr/hal-04589904


Self-financing model

Crop: By young biomass (susceptible) & Ba adult biomass (resistant)

Pest: L larva population (fast life cycle)

Pest control: P botanical pesticide (with antifeedant effect)

Money: M plantation current account & T grower’s cumulated earnings

ψL

μaBa
ra

γ

μyBy
ry

BaBy

T

L

MP
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Pest: L larva population (fast life cycle)
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Money: M plantation current account & T grower’s cumulated earnings
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Ḃy = ry By − µy B2
y − γBy

grazing

−
ψLBy

bP + 1
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Ḃa =

cabbage growth & ageing

raBa − µaB2
a + γBy −

harvest
hBa

L̇ =
larva mortality

−νLL − µLL2
− cLφPL +

recruitment

c′

B

ψLBy

bP + 1
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Crop: By young biomass (susceptible) & Ba adult biomass (resistant)

Pest: L larva population (fast life cycle)

Pest control: P botanical pesticide (with antifeedant effect)

Money: M plantation current account & T grower’s cumulated earnings
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Automatic controls: uB new seedlings, uP protection costs, and uT net income
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Automatic controls: uB new seedlings, uP protection costs, and uT net income

A. Kambeu Youmbi et al., 2024. Preprint. HAL Id: hal-04589904

MOVI 2024 – S. Touzeau 26 / 28

http://hal.inrae.fr/hal-04589904


Optimisation

Optimisation problem

Determine controls uB new seedlings, uP protection costs, and uT net income to
maximise the total earnings, i.e. the final T .

Static optimisation

Open-loop or feedback controls

Discrete controls
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Conclusion

Modelling crop pests and diseases + ecofriendly control strategies

→ insights in sustainable control deployment

Some (necessary) simplifications: no abiotic factors, single pest, open-loop control...

A few challenges (still):
◦ “small data” → link with remote sensing?
◦ growers’ decisions → behavioural epidemiology?
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A few challenges (still):
◦ “small data” → link with remote sensing?
◦ growers’ decisions → behavioural epidemiology?

Work ∈ EPITAG = EPIdemiological modelling and control for Tropical AGriculture

French & Cameroonian researchers and students, with a background in applied mathematics, and
an interest in crop diseases

Joint PhD
supervision

More on EPITAG: https://team.inria.fr/epitag/
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