Mathematical modelling for sustainable crop protection

Suzanne TOUZEAU

Institut Sophia Agrobiotech, M2P2 INRAE, Université Côte d'Azur, CNRS Sophia Antipolis, France

MACRES Inria, INRAE, CNRS, Université Côte d'Azur Sophia Antipolis, France

MOVI 2024 – Rennes, 31 May 2024

- Population & food demand are increasing *"By 2050, global agricultural production must increase by 70% [...] to meet the demand from a population of 9 billion" [FAO]*
- Crop pests, diseases and weeds threaten food security *20–40% of crop yields destroyed every year*
- Agriculture is a major sector for employment and revenues in many (developing) countries *nearly 80% of working poor live in rural areas [FAO]*
- ➥ Controlling crop pests is a major issue
- Chemical pesticides:
	- negative impact on human health & the environment
	- variable effectiveness, induce pest resistance
	- high financial and labour costs
- Need for sustainable control methods

Alternatives to chemical pesticides

- Physical methods: traps, soil solarisation... ٠
- Cultural practices: rotation, strip-cropping, destruction of residues, fallow, stump pruning...
- Biocontrol agent releases:
	- biopesticides: micro-organisms (bacteria, fungi, viruses), bio-derived chemicals (pheromones...)
	- macro-organisms: predators, parasites
	- sterile insect technique
- Plant resistance deployment:
	- qualitative (gene-for-gene / complete)
	- quantitative (polygenic / partial) resistance
	- plant tolerance

Compartmental models to represent the dynamics (progression over time) of an infectious disease in a population, where individuals are:

Susceptible = healthy, naive **E**xposed = infected, latent, non infectious **I**nfected = infectious **R**ecovered = immune, resistant / removed

E.g. SEIRS model

$$
\begin{cases}\n\dot{S} = \\
\dot{E} = \\
\dot{I} = \\
\dot{B} =\n\end{cases}
$$

Compartmental models to represent the dynamics (progression over time) of an infectious disease in a population, where individuals are:

Susceptible = healthy, naive **E**xposed = infected, latent, non infectious **I**nfected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

$$
\begin{cases}\n\dot{S} = -\beta I S & \text{force of infection } \beta I \\
\dot{E} = \beta I S \\
\dot{I} = \\
\dot{R} =\n\end{cases}
$$

Compartmental models to represent the dynamics (progression over time) of an infectious disease in a population, where individuals are:

Susceptible = healthy, naive **E**xposed = infected, latent, non infectious **I**nfected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

$$
\begin{cases}\n\dot{S} = -\beta I S \\
\dot{E} = \beta I S - \alpha E \\
\dot{I} = \alpha E \\
\dot{R} = \n\end{cases}
$$
latency period 1/ α

Compartmental models to represent the dynamics (progression over time) of an infectious disease in a population, where individuals are:

Susceptible = healthy, naive **E**xposed = infected, latent, non infectious **I**nfected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\dot{S} = -\beta I S$ $\dot{E} = \beta I S - \alpha E$ $\dot{I} = \alpha E - \gamma I$ duration of infectiousness1/ γ $\dot{\bm{R}}=\gamma\bm{\theta}$

Compartmental models to represent the dynamics (progression over time) of an infectious disease in a population, where individuals are:

Susceptible = healthy, naive **E**xposed = infected, latent, non infectious **I**nfected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\dot{S} = -\beta S + \delta R$ $\dot{E} = \beta I S - \alpha E$ $\dot{l} = \alpha E - \gamma l$ $\dot{R}=\gamma I-\delta R$ duration of immunity1/ δ

Compartmental models to represent the dynamics (progression over time) of an infectious disease in a population, where individuals are:

Susceptible = healthy, naive **E**xposed = infected, latent, non infectious **I**nfected = infectious

Recovered = immune, resistant / removed

E.g. SEIRS model

$$
\begin{cases}\n\dot{S} = -\beta I S + \delta R \\
\dot{E} = \beta I S - \alpha E \\
\dot{I} = \alpha E - \gamma I \\
\dot{R} = \gamma I - \delta R\n\end{cases}
$$

Constant population: $P = S(t) + E(t) + I(t) + R(t)$ Equilibria ($\dot{S} = \dot{E} = \dot{I} = \dot{R} = 0$): ○ disease-free (DFE): $S^* = P, E^* = I^* = R^* = 0$ \circ endemic (with disease) if $\gamma < \beta P$

Number of secondary cases generated by an average index case during its entire infectious period, when introduced in a fully susceptible population

\mathcal{R}_0 is a **threshold** (DFE local stability) $\bullet \, \mathcal{R}_0$ $<$ 1 \rightarrow no epidemic, infection cannot settle in \bullet $\mathcal{R}_0 > 1 \rightarrow$ epidemic

E.g. SEIRS model

$$
\mathcal{R}_0 = \frac{\beta P}{\gamma}
$$

If $\mathcal{R}_0 < 1$: stable DFE

Number of secondary cases generated by an average index case during its entire infectious period, when introduced in a fully susceptible population

\mathcal{R}_0 is a **threshold** (DFE local stability) $\bullet \, \mathcal{R}_0$ $<$ 1 \rightarrow no epidemic, infection cannot settle in

 \bullet $\mathcal{R}_0 > 1 \rightarrow$ epidemic

E.g. SEIRS model

$$
\mathcal{R}_0=\frac{\beta P}{\gamma}
$$

If $\mathcal{R}_0 < 1$: stable DFE

Number of secondary cases generated by an average index case during its entire infectious period, when introduced in a fully susceptible population

\mathcal{R}_0 is a **threshold** (DFE local stability)

- $\bullet \, \mathcal{R}_0$ $<$ 1 \rightarrow no epidemic, infection cannot settle in
- \bullet $\mathcal{R}_0 > 1 \rightarrow$ epidemic

E.g. SEIRS model

$$
\mathcal{R}_0=\frac{\beta P}{\gamma}
$$

If $\mathcal{R}_0 < 1$: stable DFE

Number of secondary cases generated by an average index case during its entire infectious period, when introduced in a fully susceptible population

\mathcal{R}_0 is a **threshold** (DFE local stability)

- $\bullet \, \mathcal{R}_0$ $<$ 1 \rightarrow no epidemic, infection cannot settle in
- \bullet $\mathcal{R}_0 > 1 \rightarrow$ epidemic

$$
\mathcal{R}_0=\frac{\beta P}{\gamma}
$$

If $\mathcal{R}_0 < 1$: stable DFE If $\mathcal{R}_0 > 1$: ◦ unstable DFE

◦ endemic equilibrium

Number of secondary cases generated by an average index case during its entire infectious period, when introduced in a fully susceptible population

\mathcal{R}_0 is a **threshold** (DFE local stability)

- $\bullet \, \mathcal{R}_0$ $<$ 1 \rightarrow no epidemic, infection cannot settle in
- \bullet $\mathcal{R}_0 > 1 \rightarrow$ epidemic

E.g. SEIRS model

$$
\mathcal{R}_0=\frac{\beta P}{\gamma}
$$

If $\mathcal{R}_0 < 1$: stable DFE If $\mathcal{R}_0 > 1$: ◦ unstable DFE

◦ endemic equilibrium

Number of secondary cases generated by an average index case during its entire infectious period, when introduced in a fully susceptible population

\mathcal{R}_0 is a **threshold** (DFE local stability)

- $\bullet \, \mathcal{R}_0$ $<$ 1 \rightarrow no epidemic, infection cannot settle in
- $\bullet \mathcal{R}_0 > 1 \rightarrow$ epidemic

E.g. SEIRS model

$$
\mathcal{R}_0=\frac{\beta P}{\gamma}
$$

If $\mathcal{R}_0 < 1$: stable DFE If $\mathcal{R}_0 > 1$: ◦ unstable DFE

◦ endemic equilibrium

Epidemiological models for human populations, but also animal and **plant** populations

Plant & crop specificities

Definition of a (healthy/infected) individual: plant/tree, (part of) leaf, root, fruit...?

© INRAE / SLAGMULDER Christian © INRAE / NICOLAS Bertrand © INRAE / DELOURME Regine ´

- Plants affected by diseases and pests: grazers, phytophagous insects... ۰
- Plants don't move: "contacts" via vectors, wind, water, free-living pathogen stages... ٠
- Plants usually don't recover, but variable susceptibility ٠
- Crops managed by humans: planting, harvest, partial environmental control... \bullet
- Seasonality plays an important role in annual & perennial crops

Approach

Design and analyse **epidemiological models** to:

- better understand plant–parasite interactions
- predict the evolution of damages
- provide efficient and sustainable control strategies to limit damages and crop losses

Tools: **optimisation** and **control** theory

Approach

Design and analyse **epidemiological models** to:

- better understand plant–parasite interactions
- predict the evolution of damages
- provide efficient and sustainable control strategies to limit damages and crop losses

Tools: **optimisation** and **control** theory

Different pathosystems

- single or multiple cropping seasons
- spatial scale:

¹ [Optimising cultural practices – Banana burrowing nematodes](#page-18-0)

[PhD \(2021\):](#page-18-0) **Israel T ¨ ANKAM CHEDJOU**

Frédéric GROGNARD[, Jean Jules T](#page-18-0)EWA + Ludovic MAILLERET

Optimal biopesticide-based control - Coffee berry borer

[Self-financing model for cabbage crops with pest management](#page-52-0)

Ingla-

Banana burrowing nematodes (*Radopholus similis*)

A: [Jesus, Agron Sustain Dev 2014]; B: M. MacClure, Univ. Arizona; C: [Zhang, EJPP 2012]

- Banana, including plantain: major staple food *Cameroon: 2% GDP* Ò.
- Burrowing nematodes develop, feed and reproduce in roots ۰
- Severe crop losses (up to plant toppling)
- Control
	- chemical nematicides: harmful to environment and human health
	- cropping practices (soil sanitation)
	- biological control: limited options
	- tolerant or resistant banana cultivars

Banana burrowing nematodes (*Radopholus similis*)

A: [Jesus, Agron Sustain Dev 2014]; B: M. MacClure, Univ. Arizona; C: [Zhang, EJPP 2012]

- Banana, including plantain: major staple food *Cameroon: 2% GDP* ٠
- Burrowing nematodes develop, feed and reproduce in roots .
- Severe crop losses (up to plant toppling)
- Control
	- chemical nematicides: harmful to environment and human health
	- cropping practices (soil sanitation): fallow
	- biological control: limited options
	- tolerant or resistant banana cultivars

How best to implement fallows to limit pest damages and preserve yield?

Model: initialisation

$$
\begin{cases}\nS(0) = S_0 & \text{plant root} \\
X(0) = 0 & \text{nematodes in root} \\
P(0) = P_0 & \text{nematodes in soil}\n\end{cases}
$$

Hypotheses:

- nursery-grown pest-free sucker (no asexual reproduction by offshoots)
- no male nematodes (not infective & not necessary for reproduction)

Hypothesis: some infested roots remain in soil at uprooting

Model: fallow

Hypothesis: no alternative hosts for nematodes during fallow

$$
\begin{cases}\nS(T^+) = S_0 \\
X(T^+) = 0 \\
P(T^+) = P(T) = (P(t_i) + q X(t_i))e^{-\omega \tau}\n\end{cases}
$$

Hypothesis: new nursery-grown pest-free sucker

$$
\begin{cases}\nS(T^+) = S_0 \\
X(T^+) = 0 \\
P(T^+) = P(T) = (P(t_i) + q X(t_i))e^{-\omega \tau}\n\end{cases}
$$

Hypothesis: new nursery-grown pest-free sucker

Etc. for the next seasons

Optimal fallow deployment

- Seasonal yield proxy: $Y_1 = \int_{t_r}^{t_f} w \ S(t) dt$
- Cost of a pest-free sucker: *c*
- \bullet Seasonal profit: $R_1 = Y_1 c$

Optimal fallow deployment

• Seasonal yield proxy:
$$
Y_1 = \int_{t_r}^{t_f} w S(t) dt
$$

- Cost of a pest-free sucker: *c*
- \bullet Seasonal profit: $R_1 = Y_1 c$

Optimisation problem

Determine the number and duration of fallow periods (τ_i) which

maximise the cumulated profit on a fixed multi-seasonal time horizon (T_{max}) :

$$
\max_{N,\tau_i}\sum_{i=1}^N R_i(\tau_{j,\,j
$$

Numerical method: Adaptive Random Search algorithm

Optimal fallow deployment

Admissible fallows (τ_i) such that last cropping season ends at T_{max} , e.g.:

0 T¹ T² T³ t^f τ¹ t^f τ² t^f τ³ Tmax tf **1 2 3 4**

Maximum number of fallows: $n_{\text{max}} = \left\lfloor \frac{T_{\text{max}}}{t_f} \right\rfloor - 1$

1. For $n = 1, ..., n_{\text{max}}$ optimisation over *n*-simplex: $\sum_{i=1}^{n} \tau_i = T_{\text{max}} - (n+1) t_f$ \rightarrow optimal profit R^{n*}

2. Select highest R^{n*}

Example for $T_{max} = 4000$ days ($n_{max} = 11$)

How best to implement fallows to limit pest damages and preserve yield?

Fallows can limit nematode infestation and maintain profit

- especially with long fallows early on to sanitise the soil
- but expensive pest-free suckers \rightarrow follow-up with fallows and natural reproduction

I. Tankam Chedjou et al., 2021. *Applied Mathematics and Computation* 397:125883. doi: [10.1016/j.amc.2020.125883](http://doi.org/10.1016/j.amc.2020.125883)

I. Tankam Chedjou et al., 2021. *Journal of Interdisciplinary Methodologies and Issues in Science* 8 – Digital Agriculture in Africa. doi: [10.18713/JIMIS-120221-8-4](http://doi.org/10.18713/JIMIS-120221-8-4)

How best to implement fallows to limit pest damages and preserve yield?

Fallows can limit nematode infestation and maintain profit

- especially with long fallows early on to sanitise the soil
- but expensive pest-free suckers \rightarrow follow-up with fallows and natural reproduction

I. Tankam Chedjou et al., 2021. *Applied Mathematics and Computation* 397:125883. doi: [10.1016/j.amc.2020.125883](http://doi.org/10.1016/j.amc.2020.125883)

I. Tankam Chedjou et al., 2021. *Journal of Interdisciplinary Methodologies and Issues in Science* 8 – Digital Agriculture in Africa. doi: [10.18713/JIMIS-120221-8-4](http://doi.org/10.18713/JIMIS-120221-8-4)

In terms of behavioural epidemiology?

- **•** basic economic criterion
- \bullet long term optimisation of cultural practices, but open-loop

One step further: infestation feedback to represent the grower's decision (fallow or not fallow, etc.) each season? Optimising cultural practices - Banana burrowing nematodes

[Optimal biopesticide-based control – Coffee berry borer](#page-35-0)

[PhD \(2022\):](#page-35-0) **Yves FOTSO FOTSO**

Inría

[Samuel B](#page-35-0)OWONG, Frédéric GROGNARD, Berge TSANOU

[Self-financing model for cabbage crops with pest management](#page-52-0)

Coffee berry borers (*Hypothenemus hampei*)

- Coffee: cash crop for tropical developing countries *25 million households [FAO]*
- CBB: mostly develop and feed in coffee berries
- \bullet In all production countries, economic losses $>$ 500 million \$/year
- Control
	- chemical insecticides: poorly efficient (cryptic pest)
	- trapping
	- cropping practices: strip-picking, stump pruning
	- biological control: parasitoid or predator insects, entomopathogenic fungi

Coffee berry borers (*Hypothenemus hampei*)

- Coffee: cash crop for tropical developing countries *25 million households [FAO]*
- CBB: mostly develop and feed in coffee berries
- In all production countries, economic losses $>$ 500 million \$/year
- Control
	- chemical insecticides: poorly efficient (cryptic pest)
	- trapping
	- cropping practices: strip-picking, stump pruning
	- biological control: parasitoid or predator insects, entomopathogenic fungi (*Beauveria bassiana*)

How best to apply a biopesticide to control CBB during a growing season?

Λ healthy berries

infested berries

 $\dot{y} =$ colonising φ (σ not limiting)

s = Λ − new berries infestation $\beta \frac{sy}{y}$ $y + \alpha s$ $j =$ \hat{a} + \hat{b} *sy* $y + \alpha s$ $\dot{y} = -\varepsilon \beta \frac{sy}{y + \alpha s}$ $\dot{z} = + \varepsilon \beta \frac{sy}{y + \alpha s}$

healthy berries

infested berries

colonising φ (o not limiting)

infesting φ

s = Λ − new berries infestation $\beta \frac{sy}{y}$ $y + \alpha s$ $\dot{i} = + \beta$ *sy* $y + \alpha s$ \dot{y} = emergence
 φ Z – *φz* − εβ $\frac{sy}{y + \alpha s}$ $\dot{z} = + \varepsilon \beta \frac{sy}{y + \alpha s}$

healthy berries

infested berries

colonising φ (o not limiting)

infesting φ

s = Λ − new berries infestation $\beta \frac{sy}{y}$ $y + \alpha s$ $\frac{1}{2} - \mu s$ healthy berries $\dot{i} =$ $\dot{i} = + \beta \frac{sy}{y}$ $\frac{\partial y}{\partial y + \alpha s} - \mu_i i$ infested berries $\dot{y} = \begin{array}{cc} \varphi z & -\end{array}$ $\varepsilon \beta \frac{sy}{y + \alpha s} - \mu_{y}y$ colonising φ (or not limiting) $\dot{z} = + \varepsilon \beta \frac{sy}{y + \alpha s} - \mu_z z$ infesting φ

Determine the entomopathogenic fungus application *h*(*t*) **maximising the yield** at the end of the cropping season $s(t_f)$,

$$
\mathcal{J}(h)=\zeta_s\,s(t_f)
$$

yield

:

Determine the entomopathogenic fungus application *h*(*t*)

maximising the yield at the end of the cropping season *s*(*tf*),

while **minimising the control cost** (\leftrightarrow maximise profit)

$$
\mathcal{J}(h) = \zeta_s \, \mathbf{s}(t_f) - \int_0^{t_f} C \, h(t) \, dt
$$

:

Determine the entomopathogenic fungus application *h*(*t*)

maximising the yield at the end of the cropping season $s(t_f)$,

while **minimising the control cost** (\leftrightarrow maximise profit)

& **the CBB population** for the next growing season $y(t_f)$:

$$
\mathcal{J}(h) = \zeta_s \, \mathbf{s}(t_f) - \int_0^{t_f} C \, h(t) \, dt - \zeta_y \, \mathbf{y}(t_f)
$$
\n
$$
\text{yield} \qquad \text{cost} \qquad \text{penalty}
$$

Determine the entomopathogenic fungus application *h*(*t*) **maximising the yield** at the end of the cropping season *s*(*tf*), while **minimising the control cost** (\leftrightarrow maximise profit) & **the CBB population** for the next growing season $y(t_f)$: $\mathcal{J}(\mathit{h})=\zeta_{s}\, \boldsymbol{s}(t_{\mathit{f}})-\int^{t_{\mathit{f}}}% \boldsymbol{s}(\mathit{f})\,d\mathit{f}(\mathit{h})$ yield 0 *C h*(*t*) *dt* − ζ*^y y*(*tf*) penalty

cost

Pontryagin's Maximum Principle: **bang-singular-bang** solution

Numerical method: **BOCOP**

➥ Efficient biopesticide control:

- CBB population halved
- \circ penalised profit $\mathcal J$ doubled

In a nutshell

How to best apply a biopesticide to control CBB during a growing season?

– Optimal control gives a rough idea of how to apply pest control: start high $-$ Extension with 2 controls: biopesticide $+$ traps

Y. Fotso Fotso et al., 2021. *Mathematical Methods in the Applied Sciences* 44(18):14569–14592. doi: [10.1002/mma.7726](http://doi.org/10.1002/mma.7726)

Y. Fotso Fotso et al., 2023. *Journal of Optimization Theory and Applications* 196(3):882–899. doi: [10.1007/s10957-022-02151-7](http://doi.org/10.1007/s10957-022-02151-7)

Ramir

In a nutshell

How to best apply a biopesticide to control CBB during a growing season?

- Optimal control gives a rough idea of how to apply pest control: start high
- $-$ Extension with 2 controls: biopesticide $+$ traps

Y. Fotso Fotso et al., 2021. *Mathematical Methods in the Applied Sciences* 44(18):14569–14592. doi: [10.1002/mma.7726](http://doi.org/10.1002/mma.7726)

Y. Fotso Fotso et al., 2023. *Journal of Optimization Theory and Applications* 196(3):882–899. doi: [10.1007/s10957-022-02151-7](http://doi.org/10.1007/s10957-022-02151-7)

In terms of behavioural epidemiology?

- **•** basic economic criterion
- \bullet optimal control(s), but open-loop and short term

Some steps further:

- *feedback for grower's decision*
- *information on local/regional prevalence*
- *risk perception to determine between-season controls (strip-picking, etc.)*
- ¹ [Optimising cultural practices – Banana burrowing nematodes](#page-18-0)
- Optimal biopesticide-based control Coffee berry borer
	- [Self-financing model for cabbage crops with pest management](#page-52-0)

[Ongoing PhD:](#page-52-0) **Aurelien KAMBEU YOUMBI**

Frédéric GROGNARD[, Berge T](#page-52-0)SANOU

Diamondback moth (*Plutella xylostella*)

Andrew Weeks

- Cabbages (*Brassica oleracea*): important staple food and source of income for smallholder farmers
- DBM: cosmopolitan insect, whose larvae graze mostly on cabbage plants
- Major pest, especially in regions with mild winters
- Control
	- \circ chemical pesticides \Rightarrow moth resistance botanical pesticides
	- cultural practices: inter-cropping, rotation...
	- biological control: parasitoid wasps

Diamondback moth (*Plutella xylostella*)

Andrew Weeks

- Cabbages (*Brassica oleracea*): important staple food and source of income for smallholder farmers
- DBM: cosmopolitan insect, whose larvae graze mostly on cabbage plants
- Major pest, especially in regions with mild winters
- Control
	- \circ chemical pesticides \Rightarrow moth resistance botanical pesticides
	- cultural practices: inter-cropping, rotation...
	- biological control: parasitoid wasps

How should a smallholder farmer best use the cabbage crop revenues?

$$
\dot{B}_y = r_y B_y - \mu_y B_y^2 - \gamma B_y - \frac{\psi L B_y}{bP + 1}
$$
\ncabbage growth & ageing

\n
$$
\dot{B}_a = r_a B_a - \mu_a B_a^2 + \gamma B_y - \frac{h_s}{bP + 1}
$$
\nl = -\nu_L L - \mu_L L^2 - c_L \phi PL + c_B' \frac{\psi L B_y}{bP + 1}\nl = -\psi_L L - \mu_L L^2 - c_L \phi PL + c_B' \frac{\psi L B_y}{bP + 1}

\n
$$
\dot{P} = -\phi PL - \nu_P P
$$
\niv = c_B h B_a

\n
$$
\dot{T} =
$$

Crop: *B^y* young biomass (susceptible) & *B^a* adult biomass (resistant) Pest: *L* larva population (fast life cycle) Pest control: P botanical pesticide (with antifeedant effect) Money: *M* plantation current account & *T* grower's cumulated earnings

$$
\dot{B}_y = r_y B_y - \mu_y B_y^2 - \gamma B_y - \frac{\psi L B_y}{bP + 1} + c_M u_B
$$

\ncabbage growth &aging
\n
$$
\dot{B}_a = r_a B_a - \mu_a B_a^2 + \gamma B_y - h B_a
$$

\n
$$
\dot{L} = -\nu_L L - \mu_L L^2 - c_L \phi PL + c_B' \frac{\psi L B_y}{bP + 1}
$$

\n
$$
\dot{P} = \frac{l_{\text{arva mortality}}}{-\phi PL} - \frac{\psi L B_y}{\psi L}
$$

\n
$$
\dot{M} = c_B h B_a - (u_B + u_P + u_T)
$$

\n
$$
\dot{T} = u_T
$$

Automatic controls: μ_B new seedlings, μ_P protection costs, and μ_T net income

Crop: *B^y* young biomass (susceptible) & *B^a* adult biomass (resistant) Pest: *L* larva population (fast life cycle) Pest control: P botanical pesticide (with antifeedant effect) Money: *M* plantation current account & *T* grower's cumulated earnings

$$
\dot{B}_y = r_y B_y - \mu_y B_y^2 - \gamma B_y - \frac{\psi L B_y}{bP + 1} + c_M u_B
$$

\ncabbage growth & again
\n
$$
\dot{B}_a = r_a B_a - \mu_a B_a^2 + \gamma B_y - h B_a
$$

\nlava mortality
\n
$$
\dot{L} = -\nu_L L - \mu_L L^2 - c_L \phi PL + c_B' \frac{\psi L B_y}{bP + 1}
$$

\n
$$
\dot{P} = -\phi PL - \nu_P P + c_M' u_P
$$

\n
$$
\dot{M} = c_B h B_a - (u_B + u_P + u_T)
$$

\n
$$
\dot{T} = u_T
$$

Automatic controls: u_B new seedlings, u_P protection costs, and u_T net income

A. Kambeu Youmbi et al., 2024. Preprint. HAL Id: [hal-04589904](http://hal.inrae.fr/hal-04589904)

Optimisation problem

Determine controls u_B new seedlings, u_P protection costs, and u_T net income to **maximise the total earnings**, i.e. the final *T*.

- Static optimisation
- Open-loop or feedback controls
- Discrete controls
- **Modelling crop pests and diseases** + **ecofriendly control strategies** → **insights in sustainable control deployment**
- Some (necessary) simplifications: no abiotic factors, single pest, open-loop control...
- A few challenges (still):
	- \circ "small data" \rightarrow link with remote sensing?
	- \circ growers' decisions \rightarrow behavioural epidemiology?
- **Modelling crop pests and diseases** + **ecofriendly control strategies** → **insights in sustainable control deployment**
- Some (necessary) simplifications: no abiotic factors, single pest, open-loop control...
- A few challenges (still):
	- \circ "small data" \rightarrow link with remote sensing?
	- \circ growers' decisions \rightarrow behavioural epidemiology?

Work ∈ **EPITAG** = EPIdemiological modelling and control for Tropical AGriculture

French & Cameroonian researchers and students, with a background in applied mathematics, and an interest in crop diseases

