

Accounting for farmers' control decisions into models of pathogen spread through animal trade

Lina CRISTANCHO FAJARDO PhD INRAE (MaIAGE - BIOEPAR) Supervision: Elisabeta VERGU, Pauline EZANNO

Currently: MMMI Unit (Institut Pasteur)

March 31, 2024

1. Context and motivation

Endemic livestock diseases

2. Decentralised decision-making: modelling human behaviour

3. Application on BVD extension

1. Context and motivation Endemic livestock diseases

- Metapopulation network: animal trade network
 - sub-populations: herds
 - movement of individuals: animal exchanges

Figure: Source: Gael Beaunée

• Disease spreading through animal trade has high chances of becoming endemic

- Important economic & animal health impact
- Yet, not as much efforts to eradicate compared to epidemics → control is not compulsory
- Individual management: farmers decide alone \implies decentralised

1. Context and motivation

Epidemiological modelling challenges

• Control on unstructured populations, on non-metapopulation networks or on small networks (e.g. [Perrings et al., 2014])

 \implies large metapopulation network

• Decentralised: control mostly without voluntary decision-making [Wang et al., 2016]

 \implies human behaviour

• Focus on human diseases (barely applied to veterinary epidemiology yet) [Horan et al., 2010] (e.g. [Kuga et al., 2019])

 \implies livestock disease

• Focus on regulated diseases (e.g. [Tago et al., 2016])

 \implies unregulated diseases

modelling human behaviour

Article | Open Access | Published: 05 May 2021

Accounting for farmers' control decisions in a model of pathogen spread through animal trade

Lina Cristancho Fajardo 🖂, Pauline Ezanno & Elisabeta Vergu

Scientific Reports 11, Article number: 9581 (2021) Cite this article

Framework

Each farmer j = 1, ..., J searches to make dynamic decisions regarding the adoption of a control measure in his/her own herd, that minimise a cost that depends on the disease spread

$$\min_{a_j^t} \begin{bmatrix} C_{a_j^t}^t(j) \end{bmatrix} \quad ; \quad t = \Delta_d, 2\Delta_d, 3\Delta_d \dots$$

- $a_j^t \in \{0,1\}$: decision, i.e. control decision taken at decision time t by farmer j
 - 1 (applying the measure at time t)
 - 0 (not applying it)
- $C_{a_i}^t(j)$: **cost** in herd j associated with the decision a_j^t taken at time t
 - Stochastic (depends on stochastic disease spread)
 - Unknown cost distribution associated with each possible decision

Farmer faces a dynamic decision problem under uncertainty

2. Decentralised decision-making State of the art

Main issue

Representing human behaviour in a context of many networked agents

Some approaches:

- Evolutionary game-theory (EGT): focuses on the dynamics of strategy change in populations [Smith, 1982].
 - + stochastic & no rationality & cognitive constraints & imitation
 - no learning
- Multi-armed bandits (MAB) [Auer et al., 2002] choose at each time among several possibilities to maximise an expected gain, with uncertainty in the result of the choice in advance.
 - + stochastic, learning, generic formalisation
 - not human decision-maker

Our approach

- Elaboration of an integrative model that couples:
 - Epidemiological-demographic model on a metapopulation network
 - Farmers decision-making component: dynamics of farmers' behaviour regarding the **voluntary** adoption of a **control measure** on the spread of the disease → inspired by EGT and MAB
- Numerical explorations: simulations and sensitivity analyses

Epidemiological-demographic model

Classic intra-herd stochastic model with demography on a meta-population trade network

- SIR model, frequency-dependence
- Demography (births, deaths)
- Trade network (animal transfers)
- Modeled as: Continuous-time Markov Chain (CTMC)

- β_j : infection rate in herd j
- γ : recovery rate
- τ_j : death rate in herd j
- μ_j : birth rate in herd j
- θ_{ji} : trade rate from herd j to herd i

Algorithm (Farmers' decision-making mechanism)

Input: 2 options = {0,1}, $p_1^{\Delta_d}(j) := p_1^{init} \forall j, \kappa \ge 0, \rho \ge 0$, $B(j) = \{i; \theta_{ij} \ne 0 \text{ or } \theta_{ji} \ne 0\}; j = 1, ..., J.$

for $t = \Delta_d, 2\Delta_d, 3\Delta_d...$

At each decision time

- for j = 1, ..., J
 - $\blacksquare a_j^t \leftarrow Bernoulli(p_1^t(j))$
 - $C_{a_j^t}^t(j)$ $j^* \leftarrow Unif(B(j))$

 $\ \ \, \bullet \ \, (a_{j^*}^t,C_{a_{j^*}^t}^t(j^*))$

Each farmer

Makes decision using current probability of applying the measure Observes associated cost Selects one neighbor in trade network Observes neighbor's decision and cost

■ Updates the probability of applying (*k* = 1) and not applying the measure (*k* = 0)

$$p_{k}^{t+\Delta_{d}}(j) = \frac{p_{k}^{t}(j)e^{-\kappa C_{k}^{t}(j)-\rho C_{k}^{t}(j^{*})}}{p_{k}^{t}(j)e^{-\kappa C_{k}^{t}(j)-\rho C_{k}^{t}(j^{*})} + p_{1-k}^{t}(j)e^{-\kappa C_{1-k}^{t}(j)-\rho C_{1-k}^{t}(j^{*})}}$$

where for $l = j, j^*$: $C_k(l) = 0$ if $k \neq a_j^t$.

Explanation of the algorithm

$$odds_{1}^{t+\Delta_{d}}(j) = \frac{p_{1}^{t+\Delta_{d}}(j)}{p_{0}^{t+\Delta_{d}}(j)} = \frac{p_{1}^{t}(j)e^{-\kappa C_{1}^{t}(j)-\rho C_{1}^{t}(j^{*})}}{p_{0}^{t}(j)e^{-\kappa C_{0}^{t}(j)-\rho C_{0}^{t}(j^{*})}}$$
$$odds_{1}^{t+\Delta_{d}}(j) = odds_{1}^{t}(j) \times e^{(1-2a_{j}^{t})\kappa C_{a_{j}^{t}}^{t}(j)+(1-2a_{j^{*}}^{t})\rho C_{a_{j^{*}}^{t}}^{t}(j^{*})}$$

 \implies Stochastic behaviour, learning, cognitive and social considerations

• j and j^* vaccinated $\implies odds_1(j) \ j$ vacc. decrease • j and j^* did not vaccinate $\implies odds_1(j)$ vacc. increase¹ • j and j^* made diff. decisions $\implies odds_1(j)$ depend on $\kappa C_1^t(j)$ vs $\rho C_0^t(j)$ \rightarrow action with lower weighted cost

¹or stay the same

A cost function for a given control measure: vaccination

Vaccine (partially) protects from infection in]t; $t + \Delta_d$]

Cost function of the decision

- CU_v : unitary cost of the vaccine (per animal)
- CF_v : fixed cost of the vaccination (per herd)
- $N_j(t)$: size of herd j at time t
- r : monetary value of a healthy animal
- $0 \le \phi \le 1$: rate of reduction of r if animal gets infected
- $N_{S_i \to I_i}(t, t + \Delta_d)$: no. of infections in herd j over the period
- $\overline{N_j}(t, t + \Delta_d)$: mean size of herd j over $[t, t + \Delta_d]$

Numerical exploration

Fixed setting: 5000 herds, fixed demographic parameters, fixed simulated network structure (scale-free, \sim Finistère department)

Epidemiological parameters (4)

- $1/\gamma = 90$ days (long infection duration)
- local $R_0 \sim 2.0$
- Epidemic scenario
 - Prop. of infected herds = 0.1
 - Prop. of infected animals = 0.15

Economic parameters (4)

- r (healthy animal value)
- ϕ (loss of animal value if inf.)
- CF_v (fixed cost of vacc.)
- CU_v (vaccine cost/animal)

Decision-related parameters (5)

- Δ_d (duration of decision and of vacc. efficacy)
- e_v (efficacy of the vaccine)
- p_1^{init} (initial prob. of vacc.)
- κ (sensitivity of the farmer to his/her own cost)
- ρ/κ (ratio of sensitivity of the farmer to the cost of a neighbor and κ)

 \implies 13 parameters, studied through Sensitivity Analysis [Saltelli et al., 2008]

Simulation results Disease spread over 3 years

Proportion of infected herds ($\kappa = 0.5$ and $\kappa = 12.5$)

Farmers' sensitivities to costs, κ and $\rho(=\kappa/2)$, determine:

- proportion vaccinating from the second decision time
- how quickly inter-herd prevalence declines.

SA results (2nd experiment: means of all outputs)

• Epidemiological parameters fixed

- Most influential parameters (main effect)
 - *e_v* vaccine efficacy (+)
 - Δ_d decision step (-*)
 - **\rho_v^{init} initial probability of vaccinating (+*)**
- * impact on limiting disease spread.

To sum up

- Original integrative model coupling two sub-models:
 - Stochastic disease spread on a meta-population network with demography.
 - Farmer's decision model.
 - Farmer's decision problem
 - Farmer's decision mechanism.
- Model studied through simulations and sensitivity analysis.
- Generic model: other epidemiological models, other control measures
 - \rightarrow Information is transmitted only by trade network

4. Application on BVD

RESEARCH

Learning and strategic imitation in modelling farmers' dynamic decisions on Bovine Viral Diarrhoea vaccination

Lina Cristancho-Fajardo^{1,2*}, Elisabeta Vergu¹, Gaël Beaunée², Sandie Arnoux² and Pauline Ezanno²

4. Application on BVD BVD: Bovine Viral Diarrhoea

Consequences: economic, animal well-being

BVD-free and almost BVD-free Introduction in a herd

fandatory control programme

gional or voluntary control

• pasture proximity

• trade

Figure: (Source GDS)

Figure: BVDV control in Europe [Metcalfe, 2019]

Within-herd level:

- During gestation: vertical transmission or abortion
- Horizontal transmission

4. Application on BVD

BVD model (individual-based stochastic model)

Between-herd level

- Indirect contact with infected animals in neighbouring herds through pasture (max radius of 2km): 0 to 20 neighbours (6 in average)
- Direct introduction of infected animals through **trade** movements: FCID (French Cattle Identification Database)

Within-herd level

- Life-cycle dynamics
- Health-state dynamics

4. Application on BVD

Vaccination and BVD

4. Application on BVD Simulation results ($\kappa = 1$, $\rho = 0.5$)

- All information from geographic neighbours seems most useful. In accordance with [Gates et al., 2013, Qi et al., 2019]
- No significant differences when observing only one neighbour

4. Application on BVD

SA results: varying κ ($\rho/\kappa = 0.5$)

Context

- Infectious disease spreading on large metapopulation network
 ⇒ livestock disease on animal trade network
- Dynamic decision-making processes to control spread
 - Decentralised : local control (each farmer)

Contributions

- Build integrative model for pathogen spread over an animal trade network accounting for farmers' dynamic decision-making regarding the adoption of a health measure
- Extend the integrative model and apply it to a relevant real-life disease (BVD)

References I

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2-3):235–256.

[Gates et al., 2013] Gates, M. C., Woolhouse, M. E. J., Gunn, G. J., and Humphry, R. W. (2013). Relative associations of cattle movements, local spread, and biosecurity with bovine viral diarrhoea virus (BVDV) seropositivity in beef and dairy herds.

Preventive Veterinary Medicine, 112(3):285-295.

[Horan et al., 2010] Horan, R. D., Fenichel, E. P., Wolf, C. A., and Gramig, B. M. (2010). Managing infectious animal disease systems. *Annu. Rev. Resour. Econ.*, 2(1):101–124.

[Kuga et al., 2019] Kuga, K., Tanimoto, J., and Jusup, M. (2019). To vaccinate or not to vaccinate: A comprehensive study of vaccination-subsidizing policies with multi-agent simulations and mean-field modeling. *Journal of the particul hislory*, 2106

Journal of theoretical biology, 469:107-126.

[Metcalfe, 2019] Metcalfe, L. (2019). An update on the status of bvd control and eradication in europe. J Veter Sci Med, 7(4):10–13188.

[Perrings et al., 2014] Perrings, C., Castillo-Chavez, C., Chowell, G., Daszak, P., Fenichel, E. P., Finnoff, D., Horan, R. D., Kilpatrick, A. M., Kinzig, A. P., Kuminoff, N. V., et al. (2014). Merging economics and epidemiology to improve the prediction and management of infectious disease. *EcoHealth*, 11(4):464–475.

[Qi et al., 2019] Qi, L., Beaunée, G., Arnoux, S., Dutta, B. L., Joly, A., Vergu, E., and Ezanno, P. (2019). Neighbourhood contacts and trade movements drive the regional spread of bovine viral diarrhoea virus (BVDV). Veterinary Research, 50(1):30. [Saltelli et al., 2008] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S. (2008). *Global sensitivity analysis: the primer.* John Wiley & Sons.

[Smith, 1982] Smith, J. M. (1982). Evolution and the Theory of Games. Cambridge University Press.

[Tago et al., 2016] Tago, D., Hammitt, J. K., Thomas, A., and Raboisson, D. (2016). The impact of farmers' strategic behavior on the spread of animal infectious diseases. *PloS one*, 11(6):e0157450.

[Wang et al., 2016] Wang, Z., Bauch, C. T., Bhattacharyya, S., d'Onofrio, A., Manfredi, P., Perc, M., Perra, N., Salathe, M., and Zhao, D. (2016). Statistical physics of vaccination. *Physics Reports*, 664:1–113.

- Evaluate impact of
 - type of network
 - relative temporal scale of the epidemiological and decision-making dynamics
- Perfect information: of scores (centralised) & of costs (decentralised)
 - **I**ssue: unrealistic assumption \rightarrow information difficult to gather
 - Perspective: consider noisy/partial information
- Separate decision-making processes (centralised vs decentralised)
 - Issue: in reality both farmers & social planner can adopt control measures for the same disease
 - Perspective: coupling centralised-decentralised decision-making
 - Farmers: behaviour adaption? (anticipation)
 - Social planner: incentives for farmers? (subsidies, information platforms)

Appendix Vaccination decision patterns

(a) $\kappa = 0.5$

(b) $\kappa = 12.5$

Appendix SA outputs

Epidemiological

- Proportion of infected herds at final time *T*
- Mean proportion of infected animals at final time *T* (over infected herds at time *T*)
- Proportion of herds infected at least once
- Mean number of new infectious animals in herds that got infected at least once
- Mean rate of new infectious (over susceptible animals) in herds that got infected at least once

Economic

 Total economic cost of the disease spread

Decision-related

- Mean proportion of herds that vaccinate, over the different decision times. Not including first decision
- Proportion of herds according to each vaccination aggregated pattern (without first decision):

 [never; ≤ half of the time but not never; > half all of the time but not always]

Epidemiological-decision related (1):

• For each group of herds defined by the vaccination aggregated patterns (without first decision):

Ratio of the cumulative number of new infections over the cumulative number of susceptible animals, for the herds of the pattern that got infected at least once

Appendix SA results (means of all outputs)

Appendix SA results (variances of all outputs)

Appendix BVD model Life-cycle

Figure: YJ (young juvenile), OJ (old juvenile), YFbirth(young fattened from birth), OFbirth(old fattened from birth), G(gestating), NG(non-gestating), Exit(culled)

Appendix BVD: varying p_v^{init}

Appendix **BVD: varying** κ ($\rho/\kappa = 0.5$)

Appendix **BVD: varying** κ and ρ

