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1. Context and motivation

Endemic livestock diseases

Metapopulation network: animal
trade network

sub-populations: herds
movement of individuals:
animal exchanges

Figure: Source: Gael Beaunée

Disease spreading through animal trade has high chances of becoming
endemic

Important economic & animal health impact
Yet, not as much efforts to eradicate compared to epidemics
→ control is not compulsory
Individual management: farmers decide alone =⇒ decentralised
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1. Context and motivation

Epidemiological modelling challenges

Control on unstructured populations, on non-metapopulation networks
or on small networks (e.g. [Perrings et al., 2014])

=⇒ large metapopulation network

Decentralised: control mostly without voluntary decision-making
[Wang et al., 2016]

=⇒ human behaviour

Focus on human diseases (barely applied to veterinary epidemiology yet)
[Horan et al., 2010] (e.g. [Kuga et al., 2019])

=⇒ livestock disease

Focus on regulated diseases (e.g. [Tago et al., 2016])

=⇒ unregulated diseases
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Decentralised decision-making:
modelling human behaviour
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2. Decentralised decision-making

Framework

Each farmer j = 1, ..., J searches to make dynamic decisions regarding
the adoption of a control measure in his/her own herd, that minimise
a cost that depends on the disease spread

min
atj

[
C t
atj
(j)

]
; t = ∆d , 2∆d , 3∆d ...

atj ∈ {0, 1}: decision, i.e. control decision taken at decision time t by
farmer j

1 (applying the measure at time t)

0 (not applying it)

C t
atj
(j): cost in herd j associated with the decision atj taken at time t

Stochastic (depends on stochastic disease spread)

Unknown cost distribution associated with each possible decision

Farmer faces a dynamic decision problem under uncertainty
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2. Decentralised decision-making

State of the art

Main issue
Representing human behaviour in a context of many networked agents

Some approaches:

Evolutionary game-theory (EGT): focuses on the dynamics of strategy
change in populations [Smith, 1982].

+ stochastic & no rationality & cognitive constraints & imitation
- no learning

Multi-armed bandits (MAB) [Auer et al., 2002] choose at each time among
several possibilities to maximise an expected gain, with uncertainty in the
result of the choice in advance.

+ stochastic, learning, generic formalisation
- not human decision-maker
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2. Decentralised decision-making

Our approach

Elaboration of an integrative model that couples:

Epidemiological-demographic model on a metapopulation network

Farmers decision-making component: dynamics of farmers’ behaviour
regarding the voluntary adoption of a control measure on the spread
of the disease → inspired by EGT and MAB

Numerical explorations: simulations and sensitivity analyses
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2. Decentralised decision-making

Epidemiological-demographic model

Classic intra-herd stochastic model with demography on a meta-population
trade network

SIR model, frequency-dependence

Demography (births, deaths)

Trade network (animal transfers)

Modeled as: Continuous-time Markov Chain (CTMC)

µ jN j(t)+∑i θi jSi(t) ∑i θi jIi(t) ∑i θi jRi(t)

S j I j R j

[τ j +∑i θ ji]S j(t) [τ j +∑i θ ji]I j(t) [τ j +∑i θ ji]R j(t)

β j
I j(t)
N j(t)

S j(t) γI j(t)

Figure 3: Kalman filter system model

µ jN j(t)+∑i θi jSNVi(t) ∑i θi jIi(t) ∑i θi jRi(t)

[τ j +∑i θ ji]SNVj(t) SNVj I j R j

∑i θi jSVi(t) SVj

[τ j +∑i θ ji]SVj(t) [τ j +∑i θ ji]I j(t) [τ j +∑i θ ji]R j(t)

β j
I j(t)
N j(t)

S j(t)

β v
j

I j(t)
N j(t)

S j(t)

γI j(t)

Figure 4: Kalman filter system model

2

βj : infection rate in herd j

γ: recovery rate

τj : death rate in herd j

µj : birth rate in herd j

θji : trade rate from herd j
to herd i
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Algorithm (Farmers’ decision-making mechanism)

Input: 2 options = {0,1}, p∆d
1 (j) := pinit

1 ∀j , κ ≥ 0, ρ ≥ 0,
B(j) = {i ; θij ̸= 0 or θji ̸= 0}; j = 1, ..., J.

for t = ∆d , 2∆d , 3∆d ... At each decision time

for j = 1, ..., J EE Each farmer

atj ← Bernoulli(pt
1(j)) Makes decision using current

probability of applying the measure

C t
atj
(j) f Observes associated cost

j∗ ← Unif (B(j)) ffffff Selects one neighbor in trade network

(atj∗ ,C
t
at
j∗
(j∗)) ffffO Observes neighbor’s decision and cost

Updates the probability of applying (k = 1) and not applying the
measure (k = 0)

pt+∆d
k (j) =

pt
k(j)e

−κC t
k (j)−ρC t

k (j
∗)

pt
k(j)e

−κC t
k
(j)−ρC t

k
(j∗) + pt

1−k(j)e
−κC t

1−k
(j)−ρC t

1−k
(j∗)

where for l = j , j∗: Ck(l) = 0 if k ̸= atj .

10 / 23



2. Decentralised decision-making

Explanation of the algorithm

oddst+∆d
1 (j) =

pt+∆d
1 (j)

pt+∆d
0 (j)

=
pt1(j)e

−κC t
1(j)−ρC t

1(j
∗)

pt0(j)e
−κC t

0(j)−ρC t
0(j

∗)

oddst+∆d
1 (j) = oddst1(j)× e

(1−2atj )κC
t
at
j
(j)+(1−2at

j∗ )ρC
t
at
j∗
(j∗)

=⇒ Stochastic behaviour, learning, cognitive and social
considerations

j and j∗ vaccinated =⇒ odds1(j) j vacc. decrease

j and j∗ did not vaccinate =⇒ odds1(j) vacc. increase
1

j and j∗ made diff. decisions =⇒ odds1(j) depend on κC t
1 (j) vs ρC

t
0 (j)

→ action with lower weighted cost

1or stay the same
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2. Decentralised decision-making

A cost function for a given control measure: vaccination

Vaccine (partially) protects from infection in ]t; t +∆d ]

Cost function of the decision

C t
atj
(j) =

vaccination︷ ︸︸ ︷
[CFv + CUvNj(t)] a

t
j +

infection︷ ︸︸ ︷
ϕrNSj→Ij (t, t +∆d)

∆dNj(t, t +∆d)︸ ︷︷ ︸
normalisation

CUv : unitary cost of the vaccine (per animal)

CFv : fixed cost of the vaccination (per herd)

Nj (t) : size of herd j at time t

r : monetary value of a healthy animal

0 ≤ ϕ ≤ 1 : rate of reduction of r if animal gets infected

NSj→Ij (t, t +∆d ) : no. of infections in herd j over the period

Nj (t, t +∆d ) : mean size of herd j over [t, t +∆d [
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2. Decentralised decision-making

Numerical exploration

Fixed setting: 5000 herds, fixed demographic parameters, fixed simulated network
structure (scale-free, ∼ Finistère department)

Epidemiological parameters (4)

1/γ = 90 days (long infection
duration)

local R0 ∼ 2.0

Epidemic scenario

Prop. of infected herds = 0.1
Prop. of infected animals = 0.15

Economic parameters (4)

r (healthy animal value)

ϕ (loss of animal value if inf.)

CFv (fixed cost of vacc.)

CUv (vaccine cost/animal)

Decision-related parameters (5)

∆d (duration of decision and of vacc.
efficacy)

ev (efficacy of the vaccine)

pinit1 (initial prob. of vacc.)

κ (sensitivity of the farmer to his/her
own cost)

ρ/κ (ratio of sensitivity of the farmer to
the cost of a neighbor and κ)

=⇒ 13 parameters, studied through Sensitivity Analysis [Saltelli et al., 2008]
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2. Decentralised decision-making

Simulation results Disease spread over 3 years

  
0 180 360 540 720 900 1080

time (days)

0.0

0.1

0.2

0.3

0.4

0.5 never
neigh-expw (0.5)
neigh-expw (12.5)
always

0 2 4 6 8 10 12
generation time (indiv)

Proportion of infected herds ( = 0.5 and = 12.5)

 proportion that 
vaccinates

decision time

    days

Farmers’ sensitivities to costs, κ and ρ(= κ/2), determine:

proportion vaccinating from the second decision time

how quickly inter-herd prevalence declines.
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2. Decentralised decision-making

SA results (2nd experiment: means of all outputs)

Epidemiological parameters fixed

  

0.0 0.2 0.4 0.6

interactions

main

GSI

input

r

phi

CU_v

CF_v

Delta_d

p_init_v

kappa

rho/kappa

e_v

GSI (Global Sensitivity Indices)

 
parameters
individual

effect 

 parameters
interactions 

Most influential parameters (main effect)

ev vaccine efficacy (+)
∆d decision step (−∗)
pinit
v initial probability of vaccinating (+∗)

∗ impact on limiting disease spread. 15 / 23



2. Decentralised decision-making

To sum up

Original integrative model coupling two sub-models:

Stochastic disease spread on a meta-population network
with demography.

Farmer’s decision model.

▶ Farmer’s decision problem

▶ Farmer’s decision mechanism.

Model studied through simulations and sensitivity analysis.

Generic model: other epidemiological models, other control measures

→ Information is transmitted only by trade network
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4. Application on BVD

Cristancho-Fajardo et al.

RESEARCH

Learning and strategic imitation in modelling
farmers’ dynamic decisions on Bovine Viral
Diarrhoea vaccination
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Abstract

Taking into account human decision-making is essential for understanding the
mechanisms underlying pathogen spread, particularly for specific diseases. We
present an extension of a model for pathogen spread that considers farmers
dynamic decision making regarding the adoption of a control measure in their
own herd. Farmers can either take into account the decisions and observed costs
of their trade partners, or of their geographic neighbours. The model and
construction of such costs are adapted to a specific disease, the bovine viral
diarrhoea (BVD), for which an individual-based stochastic model is considered.
Simulation based results highlight the importance of obtaining information from
geographic neighbours for the control of BVD. In particular, accounting for the
information from all geographic neighbours at each decision time seems to be
more beneficial than considering only the information from one geographic
neighbour or trade partner at a time. This study evidences the central role that
the social dynamics among farmers can take in the control and spread of BVD,
providing insights into how the public policy efforts could be targeted in order to
increase voluntary vaccination uptake against BVD in endemic areas.

Keywords: endemic disease; control; vaccination; BVD; farmers behaviour

Introduction 1

Accounting for farmer’s dynamic decision regarding control measures is key to bet- 2

ter understand livestock disease spread at a large scale, and to better predict it. 3

Recent studies [1, 2, 3] have approached this topic for vaccination, mostly from 4

an econometrical perspective that generally considers different static vaccination 5

profiles among farmers. However, farmers imitation regarding control related prac- 6

tices of other farmers has been rarely considered. In [4] an integrative model was 7

proposed to account for the dynamic decision-making process of farmers regarding 8

the adoption of a control measure. In particular, phenomena such as learning and 9

strategic imitation were considered. Yet, this model lied on a theoretical SIR infec- 10

tion dynamics, and for the decision dynamics it was assumed that farmers shared 11

information relative to their decisions only through the trade network on which the 12

disease spread. This paper presents an extension of such a model that lies on an 13

application to a specific disease: the bovine viral diarrhoea (BVD). 14

BVD is a viral disease of cattle that causes economic losses and reductions in 15

animals well-being (abortions, calving delays, and mortality) worldwide [5, 6]. In 16

particular, the infection of a pregnant female during mid-gestation, can lead to the 17
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4. Application on BVD

BVD: Bovine Viral Diarrhoea
Consequences: economic, animal well-being

Figure: BVDV control in Europe [Metcalfe, 2019]

Introduction in a herd

pasture proximity

trade

Figure: (Source GDS)

Within-herd level:

During gestation: vertical transmission or abortion

Horizontal transmission
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4. Application on BVD

BVD model (individual-based stochastic model)

Between-herd level

Indirect contact with infected animals in neighbouring herds through
pasture (max radius of 2km): 0 to 20 neighbours (6 in average)

Direct introduction of infected animals through trade movements: FCID
(French Cattle Identification Database)

Within-herd level

Life-cycle dynamics

Health-state dynamics

M

1Ge

S T R

1− 1Ge
− 1Gm

× pP

P

1Gm
× pP

Exit P
pPE

ϕM
λw + λn

♦
ϕT

M

1Ge

S T R

1− 1Ge
− 1Gm

× pP

P

1Gm
× pP

Exit P
pPE

ϕM
λw + λn

♦
ϕT
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4. Application on BVD

Vaccination and BVD

  

Vaccination decision-making 
(at time t)

cost observed by j from t-Δd to t

cost observed by neighborhood of j from t-Δd to t

friend

random

all

BVD dynamics
(from time t to t+Δd)

life-cycle
dynamics

vaccination decision taken at time t

health-related 
dynamics

time= t+Δd

all-all

selling neighbors

geographic neighbors

vaccination decision made at time t

(1)

(1)

C j
aj (t−∆d )

(t) =

vacc. breeding females︷ ︸︸ ︷
cv (t −∆d , t) ×aj(t −∆d) +

infections (P + T)︷ ︸︸ ︷
ci (t −∆d , t)

N→G (t −∆d , t)︸ ︷︷ ︸
normalisation 20 / 23



4. Application on BVD

Simulation results (κ = 1, ρ = 0.5)

0 1 2 3 4 5
year

0.0

0.1

0.2

0.3

0.4

0.5 no_decision
selling-friend
selling-random
selling-all
geographic-friend
geographic-random
all-all
geographic-all

Prop. of herds with P calves

0 1 2 3 4
year

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Prop. of herds that vaccinate

All information from geographic neighbours seems most useful. In
accordance with [Gates et al., 2013, Qi et al., 2019]

No significant differences when observing only one neighbour
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4. Application on BVD

SA results: varying κ (ρ/κ = 0.5)

0 1 2 3 4 5
year

0.0

0.1

0.2

0.3

0.4

0.5 no_decision
selling-friend
selling-random
selling-all
geographic-friend
geographic-random
all-all
geographic-all

Prop. of herds with P calves

(a) κ = 0.01, ρ = 0.005

0 1 2 3 4 5
year

0.0

0.1

0.2

0.3

0.4

0.5

Prop. of herds with P calves

(b) κ = 10, ρ = 5
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Conclusions

Context

Infectious disease spreading on large metapopulation network
=⇒ livestock disease on animal trade network

Dynamic decision-making processes to control spread

Decentralised : local control (each farmer)

Contributions

Build integrative model for pathogen spread over an animal trade network
accounting for farmers’ dynamic decision-making regarding the adoption
of a health measure

Extend the integrative model and apply it to a relevant real-life disease
(BVD)
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Appendix

Perspectives

Evaluate impact of

type of network
relative temporal scale of the epidemiological and decision-making dynamics

Perfect information: of scores (centralised) & of costs (decentralised)

Issue: unrealistic assumption → information difficult to gather
Perspective: consider noisy/partial information

Separate decision-making processes (centralised vs decentralised)

Issue: in reality both farmers & social planner can adopt control measures
for the same disease
Perspective: coupling centralised-decentralised decision-making

▶ Farmers: behaviour adaption? (anticipation)
▶ Social planner: incentives for farmers? (subsidies, information platforms)

24 / 23



Appendix

Vaccination decision patterns

(a) κ = 0.5 (b) κ = 12.5
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Appendix

SA outputs
Epidemiological

Proportion of infected herds at final
time T

Mean proportion of infected animals
at final time T (over infected herds
at time T )

Proportion of herds infected at least
once

Mean number of new infectious
animals in herds that got infected at
least once

Mean rate of new infectious (over
susceptible animals) in herds that got
infected at least once

Economic

Total economic cost of the disease
spread

Decision-related

Mean proportion of herds that vaccinate,
over the different decision times. Not
including first decision

Proportion of herds according to each
vaccination aggregated pattern (without
first decision):
[ never; ≤ half of the time but not never;
> half all of the time but not always]

Epidemiological-decision related (1):

For each group of herds defined by
the vaccination aggregated patterns
(without first decision):

Ratio of the cumulative number of new
infections over the cumulative number of
susceptible animals, for the herds of the
pattern that got infected at least once
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Appendix

SA results (means of all outputs)

all outputs
epidem
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ic output
decision outputs
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dec output
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Figure 5. Global Sensitivity Indices (GSI) for the means over runs of the outputs considered in each experiment. Sensitivities
are split in main effect and two-factor interactions. Blue colors correspond to epidemic parameters, green colors to economic
parameters, and pink colors to decision related parameters. (a) GSI for the means of all outputs, and by group of outputs in
experiment (i). (b) GSI for the means of all outputs in experiment (ii). (c) GSI for the means of decision outputs in experiment
(iii). See Table 1 for parameters definition, and Table 2 for output definition.

into account different phenomena such as learning, stochastic behavior, and imitation dynamics. To our knowledge, these301

elements are not present in the few existing models that have aimed at dynamically integrating the epidemic and decision-302

making processes of a livestock unregulated disease [19]. We remark that the basic structure of the decision-problem and the303

decision-mechanism can be found in different fields, particularly in the field of online optimization (such as multi-armed bandits304

[36]). However, we do not seek to find an asymptotically optimal algorithm, which is often the goal in that area, but rather to305

describe farmers’ decision-making process for the application of a control measure such as vaccination. More precisely, we306

consider an update of the probability of a farmer applying the measure, that is based on self-obtained results, and on neighbors’307

results.308

In our model, farmer’s next decision is based on a neighbor regardless of what the neighbor has decided in the previous309

step. This is not the case in similar models focused on human diseases [13–15], in which a person only considers other310

people’s observations if they have taken the opposite decision. In particular, this allows to always decrease the odds of a farmer311

vaccinating if both the farmer and his/her neighbor have previously vaccinated. Together with the use of the trade network312

as the information network in our model, this can amplify the emergence of strategic behaviors, as the farmer can search to313

benefit from the vaccination of one of their neighbors, while avoiding the cost of the vaccine. The behavior where individuals314

(consciously or not) benefit from the actions of others without having to bear the cost, is known as free-riding, and has been315

previously addressed within vaccination decision-making models for human diseases [6]. In particular, [37] shows it is possible316

that individuals will consciously free-ride when making vaccinating decision.317

11/16
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Appendix

SA results (variances of all outputs)
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Appendix

BVD model Life-cycle

YJ

pbredpFemale

OJ ♦ G ♦

Fadult

NG

YFbirth

1− (pbredpFemale)

OFbirth Exit

ϕY (1− pE1age<=τ∗) ϕOJ ϕG(1− pA)

cu
ll

cull
ϕNG

pAcull

pAcu
ll

pE1age<=τ∗

ϕFadult

ϕY (1− pE1age<=τ∗) ϕOFbirth

pE1age<=τ∗

Figure: YJ (young juvenile), OJ (old juvenile), YFbirth(young fattened from birth),
OFbirth(old fattened from birth), G(gestating), NG(non-gestating), Exit(culled)

29 / 23



Appendix

BVD: varying pinitv
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Appendix

BVD: varying κ (ρ/κ = 0.5)
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Appendix

BVD: varying κ and ρ
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