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Context: “an epidemic of
epidemics”



Emergent diseases

“A major change happened in the 1960s: the
emergence of a globalized epidemiological
environment specific to the Anthropocene,
the new geological era that began with the
industrial revolution.
Today, new plagues are appearing. Are we
witnessing the last outbreak of plagues with
the emergence of the Ebola or Zika?”
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Multiple suspected causes

IAir traffic

[Colizza et al. (2006). The role of the airline transportation network in the prediction and predictability of global
epidemics. Proceedings of the National Academy of Sciences.]

IGlobal warming
[Khasnis & Nettleman (2005). Global warming and infectious disease. Archives of medical research.]

I Loss of biodiversity
[Morand (2020). Emerging diseases, livestock expansion and biodiversity loss are positively related at global scale.
Biological Conservation.]

IDeforestation
[Wilcox & B. Ellis (2006). Forests and emerging infectious diseases of humans. UNASYLVA-FAO.]

IHuman behaviors
[Epstein et al. (2008). Coupled contagion dynamics of fear and disease : mathematical and computational
explorations. PLoS One.]
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A huge literature...

 Numerous books, thousands of papers...
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Differential equations

IThe SIR model (S: susceptible, I: infected, R: recovered):

dS

dt
= −βIS

N
,

dI

dt
= +βIS

N
− γI,

dR

dt
= +γI.

Important hypotheses:
 the transmission of the disease is
much faster than the dynamics of
birth and death,
 large population.

IMultiple variants: additional compartments, reaction-diffusion,
fractional diffusion, time delays, age structure...
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Individual-based models

IAgent-based models, cellular automata, transition systems...

Source: https://cloud.anylogic.com/models

6 / 40



Challenge: explain multiple epidemic waves

IExistence of irregular oscillations
IThe environment is not necessarily periodic
 First step: provide an heterogeneous spatial structure

→ geographical network
 Second step: integrate the impacts of human behaviors

→ hybrid dynamical system
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Spatial heterogeneity and human
mobilities: complex networks of
epidemic models



Setting of the problem: the SICA model

We consider a population affected by a HIV/AIDS epidemic. The
SICA model [Silva & Torres (2017)] is given by

Ṡ = Λ− β (I + ηCC + ηAA)S − µS,

İ = β (I + ηCC + ηAA)S − (ρ+ φ+ µ) I + ωC + αA,

Ċ = φI − (ω + µ)C,

Ȧ = ρ I − (α+ µ+ d)A.

S: number of susceptible individuals;
I: HIV-infected individuals with no clinical symptoms of AIDS;
C: HIV-infected individuals under ART treatment;
A: HIV-infected individuals with AIDS clinical symptoms;
N : total population.
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Parameters of the SICA model

Λ Recruitment rate
µ Natural death rate
β HIV transmission rate
ηC Modification parameter
ηA Modification parameter
φ HIV treatment rate for I individuals
ρ Default treatment rate for I individuals
α AIDS treatment rate
ω Default treatment rate for C individuals
d AIDS induced death rate

9 / 40



Dynamics of the SICA model

IThe SICA model admits a disease-free equilibrium (DFE) given
by Σ0 =

(
Λ
µ , 0, 0, 0

)
.

I Its basic reproduction number R0 (expected average number of
new infections produced by a single infected individual) is given by

R0 = S0β [ξ2 (ξ1 + ρηA) + ηCφξ1]
µ [ξ2 (ρ+ ξ1) + φξ1 + ρd] + ρωd

.

IThe disease free equilibrium Σ0 is globally asymptotically stable
if R0 < 1.

IThe SICA model admits an endemic equilibrium Σ+, which is
globally asymptotically stable if R0 > 1.

IThe SICA model can be rewritten:

ẋ = f(x, p), x = (S, I, C, A)T , p = (Λ, β, . . . , α, d).
10 / 40



Case study: Cape Verde archipelago

I Ideas:

 we can model the archipelago by a graph,

 we can couple each vertex of the graph with an instance of
the SICA model.
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Complex network of SICA models

IWe consider a graph G with n vertices.

IWe divide the vertices into two subsets V1, V2.

IWe couple:

 the vertices of V1 with an instance of the SICA model for
which R0 < 1,

 the vertices of V2 with an instance of the SICA model for
which R0 > 1.
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Complex network of SICA models

IThe complex network is determined by:

Ẋ = F (X, P ) + LHX,

where

X = (x1, . . . , xn)T ∈
(
R4
)n
,

HX = (Hx1, . . . , Hxn)T ∈
(
R4
)n
,

P = (p1, . . . , pn) ∈
(
R10

)n
,

and F determines the internal dynamic of each vertex:

F (X, P ) =
(
f(x1, p1), . . . , f(xn, pn)

)T
.
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Complex network of SICA models

IExplicit equations of the complex network:

Ṡj = Λj − βj
(
Ij + ηC,j Cj + ηA,jAj

)
Sj − µjSj + εS

n∑
k=1

Lj,kSk,

İj = βj
(
Ij + ηC,j Cj + ηA,jAj

)
Sj − (ρj + φj + µj) Ij

+ωjCj + αjAj + εI

n∑
k=1

Lj,kIk,

Ċj = φjIj − (ωj + µj)Cj + εC

n∑
k=1

Lj,kCk,

Ȧj = ρj Ij − (αj + µj + dj)Aj + εA

n∑
k=1

Lj,kAk.
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Connections

IL is the matrix of connectivity: for each edge (k, j) ∈ E , k 6= j,
we have Lj,k > 0. If (k, j) /∈ E , k 6= j, we set Lj,k = 0. The
diagonal coefficients satisfy

Lj,j = −
n∑
k=1
k 6=j

Lk,j .

IFinally, H is the matrix of the coupling strengths and it is given
by

H =


εS 0 0 0
0 εI 0 0
0 0 εC 0
0 0 0 εA

 ,
with non negative coefficients εS , εI , εC and εA.

15 / 40



Disease-Free Equilibrium of the complex network

I Theorem (Cantin & Silva 2019)
The complex network of SICA models admits a unique
disease-free equilibrium Σ0, which is globally asymptotically
stable in the region Ω defined by

Ω =

(xj)1≤j≤4n ∈ (R+)4n ;
4n∑
j=1

xj ≤
∑

Λj
minµj

 .
provided

Λ0
µ0

Ni
Di

< 1,

for all i ∈ {1, . . . , n}, with known constants Ni, Di.

 Local basic reproduction number: R0,i = Λi
µi

Ni
Di

.
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Example: simple two-nodes network

1 2

Two-nodes network. Green node: R0,1 < 1. Red node: R0,2 > 1.

0 0.5 1 1.5 2

0

0.5

1

1.5

εS

(a)

R0,1

R0,2

0 0.5 1 1.5 2

0.6

0.8

1

1.2

1.4

εI

(b)

R0,1

R0,2

0 0.5 1 1.5 2
0.6

0.8

1

1.2

1.4

1.6

εC

(c)

R0,1

R0,2

0 0.5 1 1.5 2

0.8

1

1.2

1.4

εA

(d)

R0,1

R0,2

Influence of the coupling strengths εS , εI , εC and εA on the basic
reproduction numbers R0,1 and R0,2.
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Randomly generated topologies

IWe introduce the final level of infected individuals:

Lf =
n∑
j=1

[
Ij(T ) + Cj(T ) +Aj(T )

]
.

IQuestion: can we find a network topology that minimizes Lf?

I Idea: we generate a sample of randomly generated topologies, by
choosing a random number of edges 1 ≤ |E | ≤ 72, and a random
subset of |E | edges.
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Optimal topologies
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(a) Weak coupling
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(b) Strong coupling

Numerical results for two samples of 1400 randomly generated
topologies. Green dotted vertical line: level of infected individuals
without coupling. Optimal topology: green circle.
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Time series of an optimal topology

IA near-optimal topology detected by the random simulation:

E =
{

[1, 3], [2, 9], [5, 6], [3, 7], [7, 9], [2, 7], [1, 9],

[6, 2], [6, 4], [2, 8], [5, 2], [8, 1], [1, 5], [1, 4]
}
.
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Influence of human behaviors:
hybrid dynamical systems



Construction of a class of abstract hybrid models

IAssume a population of individuals is subject to a complex
evolution process which cannot be described at a single scale.
IWe construct a hybrid model by coupling a system of ordinary
differential equations and a discrete process, which can be derived
from an agent-based model.

IThe population is divided into several disjoint groups

X = (x1, . . . , xn).

IWe consider a discrete sequence of times (ts).
IWe introduce, for s ≥ 0, the abstract hybrid problem

(IC) X(t0) = X0, λ0 ∈ J,

(Ms) Ẋ(t) = F
(
X(t), λs

)
, ts < t ≤ ts+1,

(ms) λs+1 = G
(
X(ts+1), λs

)
.
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Construction of a class of abstract hybrid models

IF is a function defined in E × J with values in Rn, where E is
an open subset of Rn and J is an open subset of Rd.

IG is a function defined in E × J with values in J .

I (IC) determines the initial condition (X0, λ0) ∈ E × J .

I (Ms) is an ordinary differential equation which determines the
macroscopic part of the hybrid problem.

I (ms) is a discrete mapping which determines the microscopic
part of the hybrid problem.
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Timeline of the hybrid model

t0 t1 t2 t3 t4

IC m0 m1 m2 m3

M0 M1 M2 M3 M4

Timeline of the hybrid model. At t = t0, the initial condition (IC)
gives (X0, λ0) ∈ E × J . On each interval [ts, ts+1], the
macroscopic part (Ms) is determined by an ordinary differential
equation. At each time step t = ts, the microscopic part (ms)
follows from a discrete mapping which is derived from an
agent-based model.
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Well-posedness of the hybrid model: assumptions

IAssumption 1. The function F involved in the macroscopic
part (Ms) of the hybrid problem is C 1(E × J).

IAssumption 2. There exists a compact set K ⊂ E such that,
for all (X0, λ0) ∈ K × J , each local solution X(t,X0) of the
Cauchy problem

X(t0) = X0, Ẋ(t) = F
(
X(t), λ0

)
defined on [t0, t0 + T ] with T > 0 satisfies

X(t,X0) ∈ K,

for all t ∈ [t0, t0 + T ].

IAssumption 3. The function G involved in the microscopic part
(ms) of the hybrid problem is continuous in E × J .
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Well-posedness of the hybrid model: statement

I Theorem (Cantin Silva Banos, 2022)
Let the assumptions 1, 2 hold. Then for all (X0, λ0) ∈ K × J ,
the hybrid problem admits a unique global solution X(t,X0, λ0)
defined on [t0,+∞).

If moreover assumption 3 holds, then each global solution
X(t,X0, λ0) of the hybrid problem is continuous at (X0, λ0),
uniformly on each finite time interval [t0, t0 +T ] with T > 0, that
is, for each T > 0 and each ε > 0, there exists δ > 0 such that

‖X(t,X0 + h, λ0 + k)−X(t,X0, λ0)‖Rn < ε,

for all t ∈ [t0, t0 + T ], provided that ‖(h, k)‖Rn×Rd < δ.

IWhat if G is discontinuous?  High sensitivity of the model.
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Irregular oscillations

IWe suppose that there exist two distinct parameters sets Λ1 ⊂ J
and Λ2 ⊂ J with Λ1 ∩ Λ2 = ∅.

IAssume Σ1 is an equilibrium point of the equation

Ẋ = F (X,λ1),

for each λ1 ∈ Λ1, and Σ2 is an equilibrium point of the equation

Ẋ = F (X,λ2),

for each λ2 ∈ Λ2.

IWe introduce the minimum step of the timeline {ts}:

τ = min
s≥0
|ts − ts+1| .
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Irregular oscillations

I Theorem
Suppose that assumptions 1, 2 hold. Assume that Σ1 is globally
asymptotically stable in W1 ⊂ K for each λ1 ∈ Λ1, Σ2 is globally
asymptotically stable in W2 ⊂ K for each λ2 ∈ Λ2. Assume
moreover that Σ1 ∈W2, Σ2 ∈W1 and G(Y, λ) ∈ Λ2 if Y is near
Σ1 and λ ∈ Λ1, G(Y, λ) ∈ Λ1 if Y is near Σ2 and λ ∈ Λ2.

Then every solution X(t,X0, λ0) of the hybrid problem starting
from (X0, λ0) ∈W1 × Λ1 admits irregular oscillations, that is,
oscillations between a neighborhood N1 of Σ1 and a
neighborhood N2 of Σ2, provided the minimum step τ of the
timeline is sufficiently large.
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Hybrid model applied to COVID-19

IWe consider the SAIRP model with refractory behaviors [Silva
et al. 2021]:

Ṡ = Λ− β
(
1− p(1− u)

) (θA+I)
N S − φp(1− u)S + ωP − µS,

Ȧ = β
(
1− p(1− u)

) (θA+I)
N S − νA− µA,

İ = νA− δI − µI,

Ṙ = δI − µR,

Ṗ = φp(1− u)S − ωP − µP.

IS: susceptible individuals, A: asymptomatic infected individuals,
I: active infected individuals, R: removed (including recovered and
COVID-19 induced deaths); P : protected individuals.
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Parameters of the SAIRP model

Λ Recruitment rate
µ Natural death rate
θ Infectiousness of the asymptomatic infected individuals
v Transfer rate from A to I
q Fraction of A individuals that are confirmed to be infected
φ Transfer rate from S to P
δ Transfer rate from I to R
ω Transfer rate from P to S
p Fraction of protected individuals
u Refractory or opposition behaviors to the protection strategy

29 / 40



Geographical network modeling the spatial distribution

IWe assume that the individuals are spatially distributed into a
finite number of regions D1, . . . , Dm with m ≥ 1; some of these
regions are interconnected and individuals present a spatial
mobility from one region to another.
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ε23
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ε54

IThe dynamics of the epidemic is modeled at the macroscopic
scale by a complex network of ordinary differential equations:
dxi,j
dt

= fj
(
xi, αi

)
+ σj

n∑
k=1

Li,kxj,k, 1 ≤ j ≤ 5, 1 ≤ i ≤ m, t ≥ 0.
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Transition from the ODE to an agent-based model

IWe cannot follow the trajectory of a single individual during the
macroscopic process.

IAssume X(t,Xs, λs) solves (Ms) on [ts, ts+1]. For each
sub-population xij of type j in each region Di, we evaluate
xij(ts+1) and we compute Nij(ts+1) = bxij(ts+1)c. We then
introduce the agents: Aij =

{
a1
ij , a

2
ij , . . . , a

Nij

ij

}
.

IWe generate a social network over the groups
(
Aij)1≤j≤5 of

each region Di by running a graph generation algorithm.

31 / 40



Transition from the ODE to an agent-based model

IWe cannot follow the trajectory of a single individual during the
macroscopic process.
IAssume X(t,Xs, λs) solves (Ms) on [ts, ts+1]. For each
sub-population xij of type j in each region Di, we evaluate
xij(ts+1) and we compute Nij(ts+1) = bxij(ts+1)c. We then
introduce the agents: Aij =

{
a1
ij , a

2
ij , . . . , a

Nij

ij

}
.

IWe generate a social network over the groups
(
Aij)1≤j≤5 of

each region Di by running a graph generation algorithm.

31 / 40



Collective behaviors in response to the epidemic

We assume that agents model citizens or decision makers and
focus on two types of actions.

IAction 1. In each region Di, 1 ≤ i ≤ m, decision makers
evaluate the rate ρI(Di, ts+1) of infected individuals.

• If the rate ρI(Di, ts+1) overcomes a given threshold T1, that
is ρI(Di, ts+1) > T1, then decision makers decide to increase
the fraction pi of individuals.

• Else, the fraction of protected individuals is maintained.
• If at least one of the rates ρI(Di, ts+1), 1 ≤ i ≤ m,

overcomes a second threshold T2 > T1, then decision makers
decide to confine the individuals in their region.

• Else, then decision makers reestablish the mobilities.
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Collective behaviors in response to the epidemic

IAction 2. In each region Di, agents agij observe the types of
their neighbors. Among these neighbors, each agent a evaluates
the number N(I, a, ts+1) of infected neighbors.

• If the rate of infected neighbors overcomes a given threshold
T3, then citizens decide to be in opposition with the
protection strategy.

• Else, then citizens accept to decrease their level of opposition.

IThe two-actions protocol defines a discrete mapping

λs+1 = G
(
X(ts+1), λs

)
,

which determines the microscopic part (ms) of a hybrid model.
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Analysis of the hybrid model

I Theorem (Cantin Silva Banos, 2022)
(1) For any X0 ∈ (R+)5m and any λ0 ∈ J , the hybrid model
admits a unique solution denoted by X(t, X0, λ0), defined on
[0, ∞), whose components are non-negative.

(2) Furthermore, the hybrid model admits a compact and
positively invariant region K.

(3) The hybrid model admits solutions exhibiting irregular
solutions between two equilibrium points (DFE and EE).
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Irregular oscillations

ISolutions exhibiting irregular solutions can easily be generated by
forcing a variation of the parameter p.
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I(t) ; p = 0.2

I(t) ; p = 0.95

 Roughly: p = 0.95⇔ confinement, p = 0.2⇔ end of
confinement.
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Testing scenarios ad lib

Scenario 1: infection under control with fast confinement decision
Sc. 2: postponed extinction of the disease by slowness in the
decision process
Sc. 3: postponed extinction of the disease by opposition behaviors
Sc. 4: emergence of multiple pandemic waves due to risk negation
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On going work



Hybrid dynamical system with continuous domains

IWe consider a reaction-diffusion epidemic model ∂tS = d1∆S + µN − µS − βSI, x ∈ Ω, t > 0,
∂tI = d2∆I − (µ+ ν)I + βSI, x ∈ Ω, t > 0,

in a bounded domain Ω, coupled with a discrete-probabilistic
process along a timeline of step τ > 0.

IQuestions:
• well-posedness of the hybrid model?
• stability of the equilibrium points?
• bifurcation of cycles w.r.t τ?
• existence of an attractor?
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Abstraction and verification of hybrid dynamical systems

IWe consider a continuous dynamical system Sλ(t) depending on
a parameter λ, with uniform phase space Φ, coupled with a
discrete probabilistic process Θ along a timeline of step τ > 0.

IHow to verify dynamical properties of the hybrid system (S)
resulting from the coupling?

 We can abstract the dynamics of the hybrid system as a Markov
decision process (M) and verify relevant properties directly on
(M), with Model Checking algorithmic techniques of theoretical
computer science.

IThe abstraction requires to consider a discretization of the
hybrid model (S).
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Abstraction and verification of piecewise deterministic Markov
processes

IHow to abstract a property of (S) as a property of (M)?

I Is the abstraction a “surjective” mapping?

ICan we “inverse” the verification‘ of (M)?
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Conclusion

I It is difficult to model human behaviors and their influence on
the spread of an epidemic.
I It is important to couple multiple formalisms and multiple scales.
IA hybrid model can reproduce complex epidemic waves.

I It seems very difficult to analyze the dynamics of such a hybrid
dynamical system.

 Joint work with Cristiana J. Silva, Arnaud Banos
[Mathematical analysis of a hybrid model: Impacts of individual behaviors on
the spreading of an epidemic, Networks and Heterogeneous Media (2022)]

I and also: A. Tajani, B. Delahaye, G. Ardourel, D. Julien.

Thank you for your attention!
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