

Alexey Mikaberidze¹ and Nik Cunniffe²

¹University of Reading, UK; ²University of Cambridge, UK

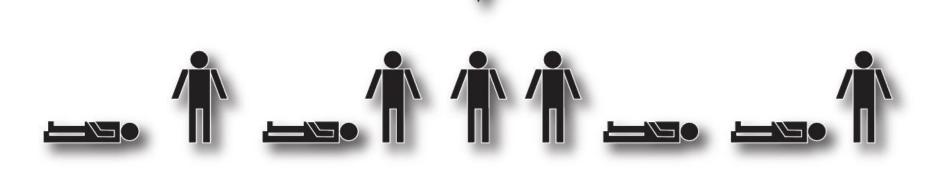
What is the basic reproduction number, R_o ?

infected host

Anderson & May 1986

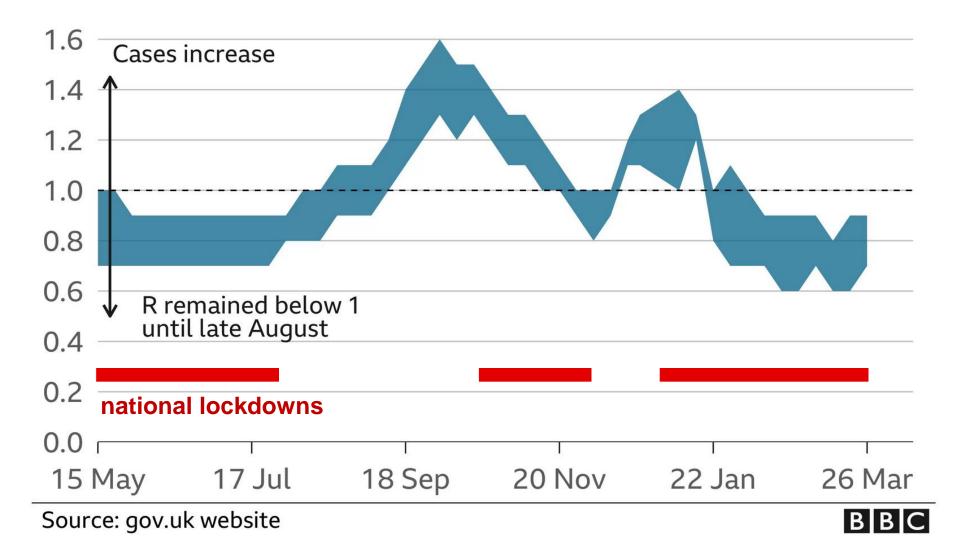
What is the basic reproduction number, R_o ?

 $R_{0} = 4$



Anderson & May 1986

"R number" for COVID-19 in 2020-2021 in the UK



Outline

- 1. What is R_0 and what it can be used for?
- 2. Estimating R_0 for potato late blight
- 3. Methods of calculating R_{0}
- 4. R₀ across space: from fields to landscapes
- 5. Epidemiological modelling <-> remote sensing

What is the basic reproduction number R_{0} for plant diseases?

$$R_0 = 4$$

What is the basic reproduction number R_0 for plant diseases?

1. What are host units?

- 2. Space is important
- 3. Plants do not (usually) recover

$$R_{0}=4$$

How modelling and R₀ can be used to improve disease management

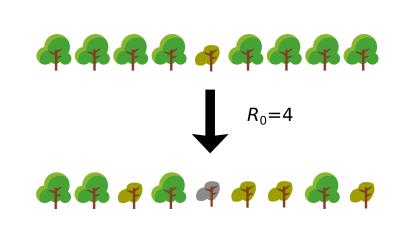
Gain a mechanistic understanding of how diseases spread

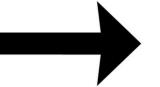
 R_0 as epidemic threshold

 R_0 as measure of pathogen fitness

Understand how pathogens adapt to control measures

 R_0 as measure of competitive capacity





Devise mathematical models to inform disease management R_0 as metric for monitoring R_0 as indication of success

R_0 across space

3. cultivated landscapes

1. plants/leaves

2. fields (or orchards)

What is R_0 for potato late blight?

INCREASE OF DISEASE WITH TIME

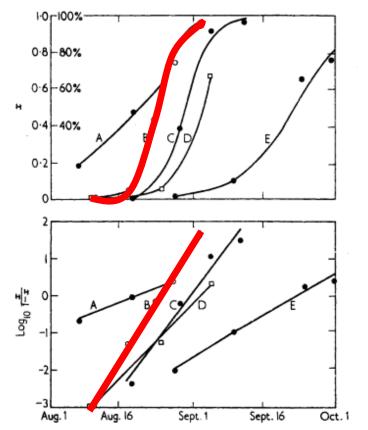


FIG. 4.1. Progress of blight on potatoes caused by *Phytophthora infestans*. The top half shows the increase of x, and the bottom half the increase of $\log_{10}[x/(1-x)]$, with time. Data of Large (1945). A, variety Majestic, Dartington, 1943; B, variety Majestic, Dartington, 1942; C, variety Majestic, Kentisbeare, 1942; D, variety Majestic, Durnsford, 1944; E, variety Arran Consul, Dartington, 1941.

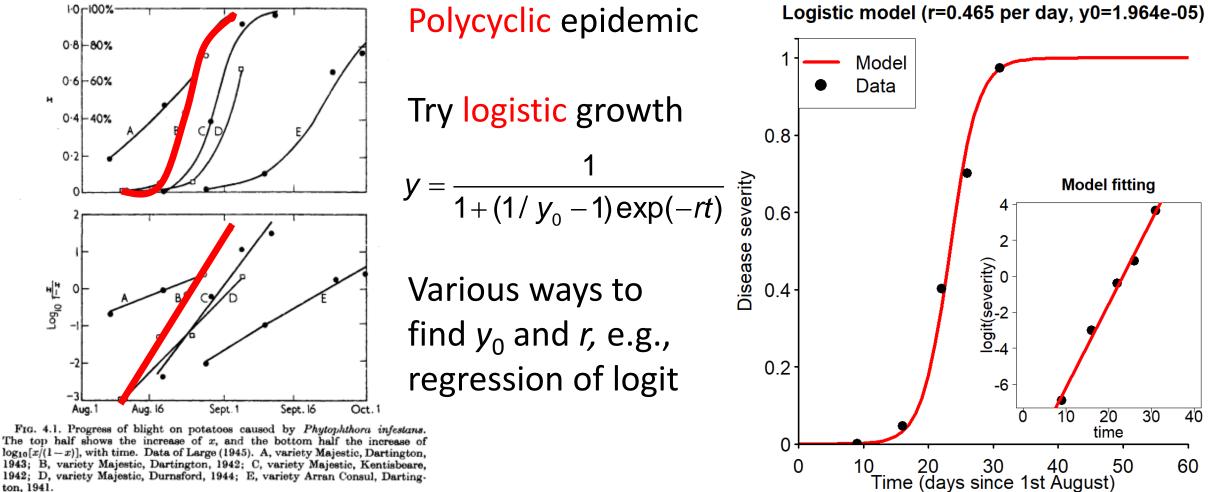
Question

Can we fit an SIR type model to van der Plank's Epidemic B to find R_0 ?

van der Plank (1963) Plant Diseases: Epidemics & Control

Potato late blight. Classical approach

INCREASE OF DISEASE WITH TIME



 $\log_{10}[x/(1-x)]$, with time. Data of Large (1945). A, variety Majestic, Dartington, 1943; B, variety Majestic, Dartington, 1942; C, variety Majestic, Kentisbeare, 1942; D, variety Majestic, Durnsford, 1944; E, variety Arran Consul, Dartington, 1941.

A compartmental model

Divide population into classes according to disease status

(S)usceptible	Healthy (& not infected)
(I)nfected	Infected (& actively infecting others)
(R)emoved	Dead/post-infectious

Must decide on a scale; use "infectable site" (area of leaf covered by lesion) Omit latent period for now (could be added easily; see later) Assume total population is constant (no birth/death; could be relaxed easily)

A compartmental model

Infection

A single susceptible site becomes infected

Net rate depends on numbers of susceptible and infected sites

Removal

A single infected site becomes removed (dead/post-infectious) Net rate depends on number of infected sites only

A compartmental model

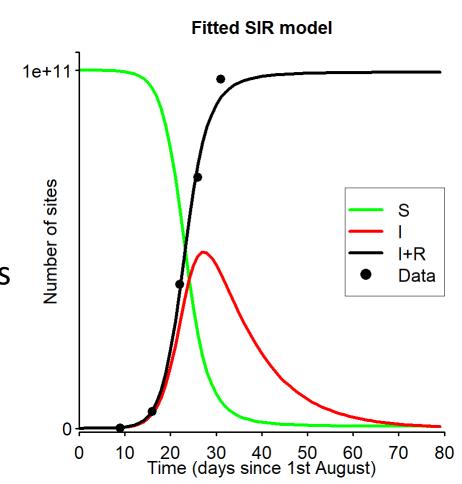
- β = rate of infection
 (per susceptible,
 per infected)
- μ = rate of removal(infectious period is 1/μ)

$$\frac{dS}{dt} = -\beta/S$$
$$\frac{dI}{dt} = \beta/S - \mu/I$$
$$\frac{dR}{dt} = \mu/I$$

Fitting the model

Experiment	Time	Severity
В	9	0.001
В	16	0.047
В	22	0.402
В	26	0.701
В	31	0.975

- Fit *I* + *R* from model to Severity by least squares
- Assume *N* = 1 x 10¹¹ and µ = 0.1 day⁻¹
- Free parameters to fit are β and I(0)



R

So, what is R_0 for potato late blight?

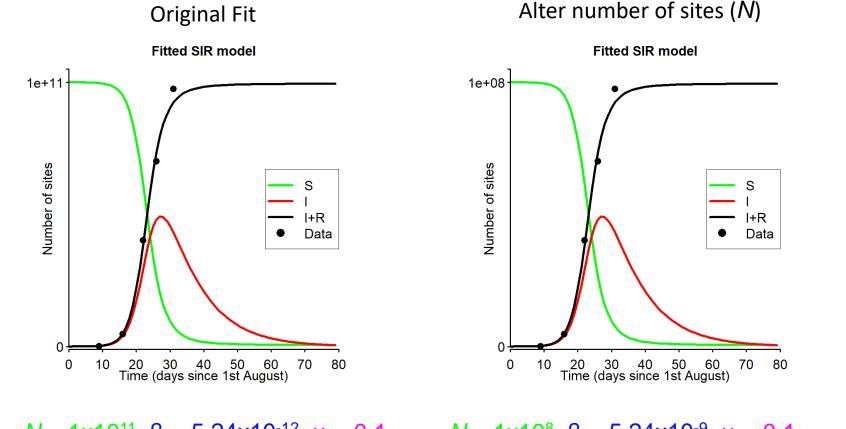
- R₀ = Number of new infections caused by a single infected individual introduced into a totally susceptible population
- $R_0 = \text{Infection Rate x Population Size x Infectious Period} = \beta \times N \times \frac{1}{\mu} = \frac{\beta N}{\mu}$

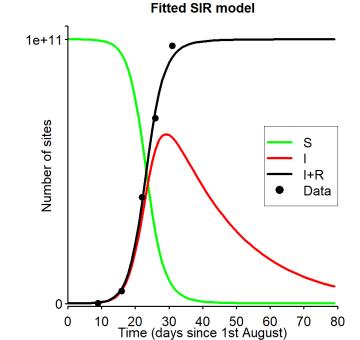
Susceptible Infection

• For van der Plank's Epidemic B (assuming N and μ and fitting β and l(0))

$$R_0 \approx \frac{1 \times 10^{11} \times 5.24 \times 10^{-12}}{0.1} \approx 5.24$$

Do assumptions matter?





Alter infectious period $(1/\mu)$

 $N = 1 \times 10^{11}, \beta \sim 5.24 \times 10^{-12}, \mu = 0.1$ $N = 1 \times 10^{8}, \beta \sim 5.24 \times 10^{-9}, \mu = 0.1$

 $N = 1 \times 10^{11}$, $\beta \sim 4.44 \times 10^{-12}$, $\mu = 0.05$

R₀ ~ 5.24

$$R_0 \sim 5.24$$

R_∩ ~ 8.88

A simple way of finding R₀ you may see

A threshold for initial spread extracted from dI/dt (0)

$$\frac{dS}{dt} = -\beta/S$$
$$\frac{dI}{dt} = \beta/S - \mu/I$$
$$\frac{dR}{dt} = \mu/I$$

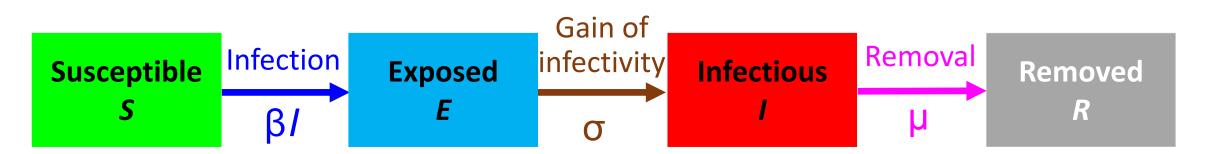
At
$$t = 0$$
 $\frac{dI}{dt} \approx \beta I N - \mu I$

And R_0 is just the quantity that needs to be greater than one to make dI/dt(0) > 0, i.e. $R_0 = \frac{\beta N}{11}$

Very simple, but only easy when models have single infectious class; true R_0 can also be ambiguous

In practice we use Next Generation Matrix; see later

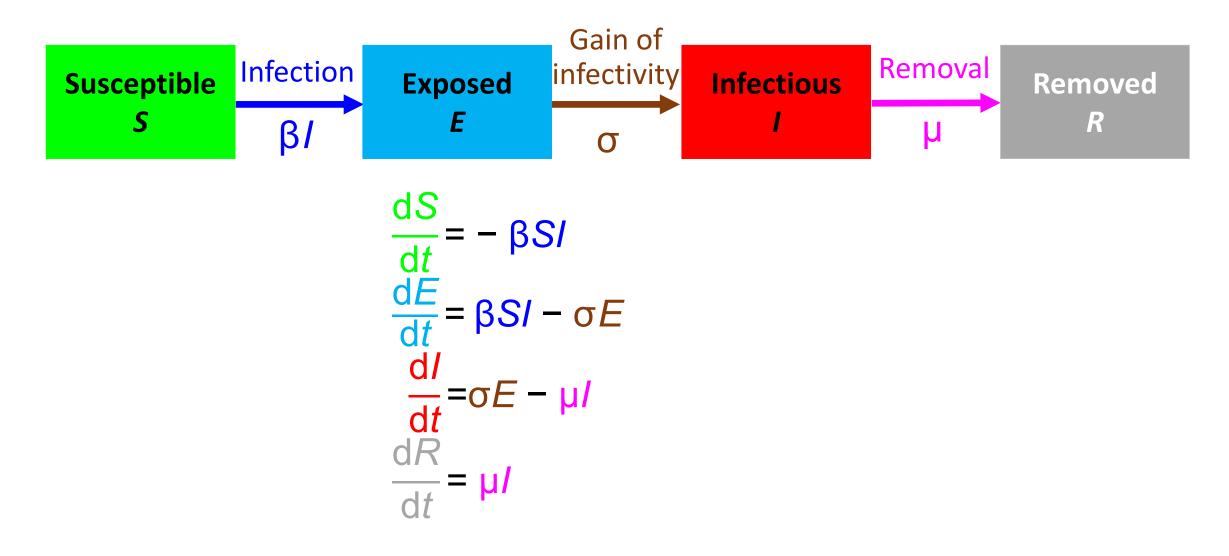
Extension. SEIR model (adding latent period)

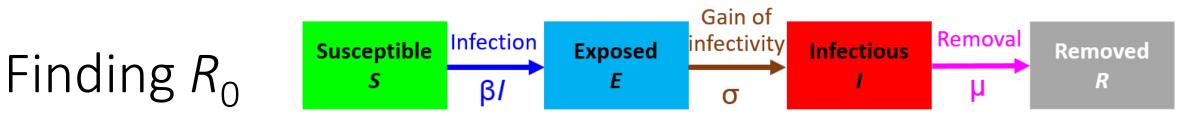


Rate of change of Susceptible sites Rate of change of Exposed sites Rate of change of Infectious sites Rate of change of Rate of change of Rate of change of

- Infection
- = + Infection Gain of infectivity
- = + Gain of infectivity Removal
- = + Removal

Extension. SEIR model (adding latent period)





Introduce an infectious host to population of size N

Exposed (i.e., latent) for $1/\sigma$; Infectious for $1/\mu$

Causes <u>no new infections</u> while Exposed

Causes infections at net rate βN while Infectious

$$R_0 = 0 \times \frac{1}{\sigma} + \beta N \times \frac{1}{\mu} = \frac{\beta N}{\mu}$$
 (precisely as before)

 $\frac{dS}{dt} = -\beta S I$ $\frac{dE}{dt} = \beta S I - \sigma E$ $\frac{dI}{dt} = \sigma E - \mu I$ $\frac{dR}{dt} = \mu I$

The construction of next-generation matrices for compartmental epidemic models

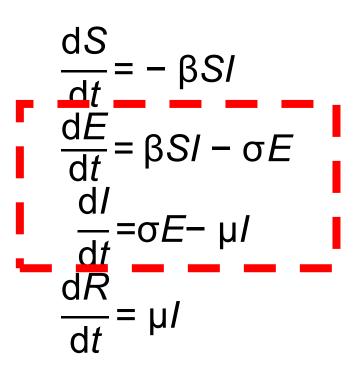
O. Diekmann¹, J. A. P. Heesterbeek^{2,*}, and M. G. Roberts³

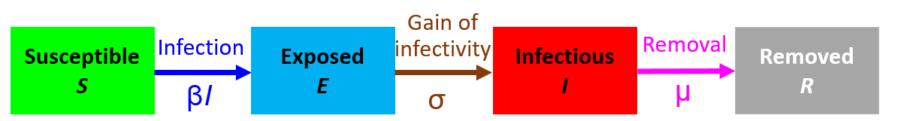
 ¹Department of Mathematics, Utrecht University, Budapestlaan 6, 3584 CD, Utrecht, The Netherlands
 ²Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
 ³Centre for Mathematical Biology, Institute of Information & Mathematical Sciences, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand

- These models were simple enough to reason out the form of R_0
- But this can be hard, particularly if "generation" is unclear, e.g., multiple host types
- Gold standard is "Next Generation Method"
- Embeds discrete time model in the (continuous time) compartmental model
- Underlying maths looks (is!) frightening, but boils down to just a calculation
- Tutorial introduction in Diekmann et al. (2010) J. Roy. Soc. Interface: 7:873-885.

Finding R_0 in practice

Next generation method for SEIR model





Next generation method for SEIR model

-BS

=σ*E*- μ/

 $\beta SI - \sigma E$

Focus on vector of infected hosts: $\mathbf{x} = (E, I)^T$

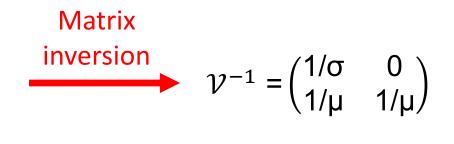
Model is
$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}) - \mathbf{V}(\mathbf{x})$$
 where
 $\mathbf{F}(\mathbf{x}) = (\beta S I, 0)^T$ New infections
 $\mathbf{V}(\mathbf{x}) = (\sigma E, \mu I - \sigma E)^T$ Transfers out

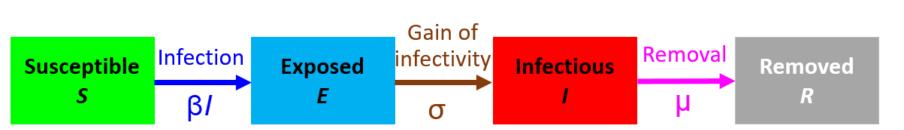
 R_0 is largest eigenvalue ("spectral radius") of \mathcal{FV}^{-1} where \mathcal{F} and \mathcal{V} are Gain of Removal Infection infectivity Exposed Infectious **Susceptible** Removed Jacobians of **F** and **V** S Ε R ß σ

Next generation method for SEIR model $F(x) = (F_E, F_I)^T = (\beta SI, 0)^T$ $V(x) = (V_E, V_I)^T = (\sigma E, \mu I - \sigma E)^T$

At DFE

 $\boldsymbol{x} = (E, I)^T$





 $\mathcal{F} = \frac{\partial F_i}{\partial x_j} = \begin{pmatrix} \frac{\partial F_E}{\partial E} & \frac{\partial F_E}{\partial I} \\ \frac{\partial F_I}{\partial F} & \frac{\partial F_I}{\partial I} \end{pmatrix}$

 $\mathcal{V} = \frac{\partial V_i}{\partial x_j} = \begin{pmatrix} \frac{\partial V_E}{\partial E} & \frac{\partial V_E}{\partial I} \\ \frac{\partial V_I}{\partial E} & \frac{\partial V_I}{\partial I} \end{pmatrix}$

Next generation method for SEIR model

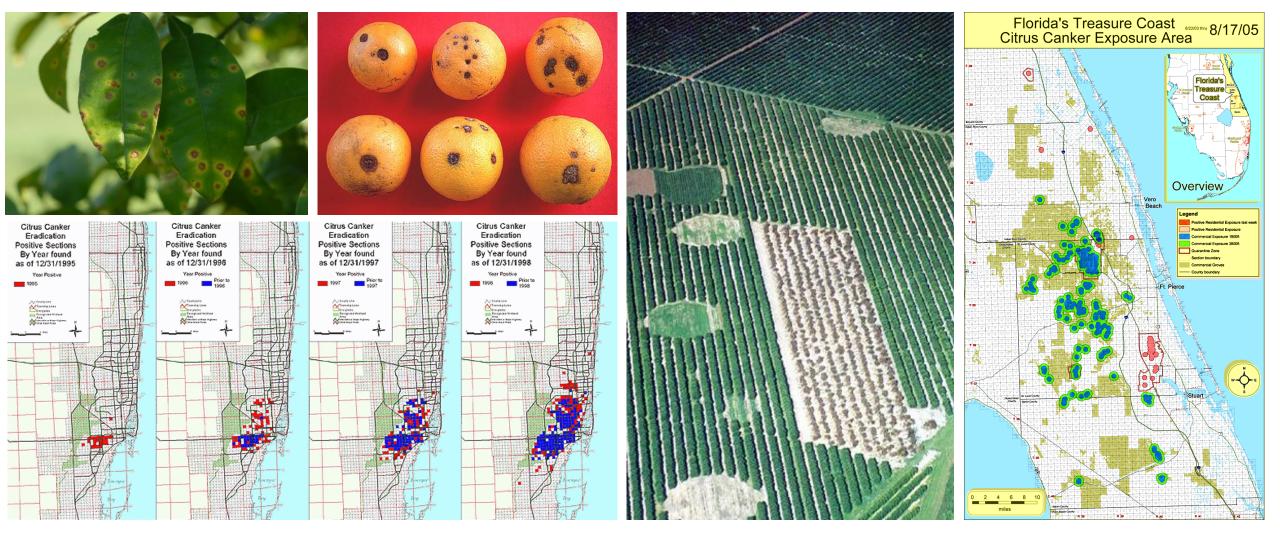
 R_0 is the largest eigenvalue ("spectral radius") of \mathcal{FV}^{-1}

$$\mathcal{FV}^{-1} = \begin{pmatrix} 0 & \beta N \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sigma & 0 \\ 1/\mu & 1/\mu \end{pmatrix}$$

Eigenvalues are 0 and $R_0 = \frac{\beta N}{\mu}$

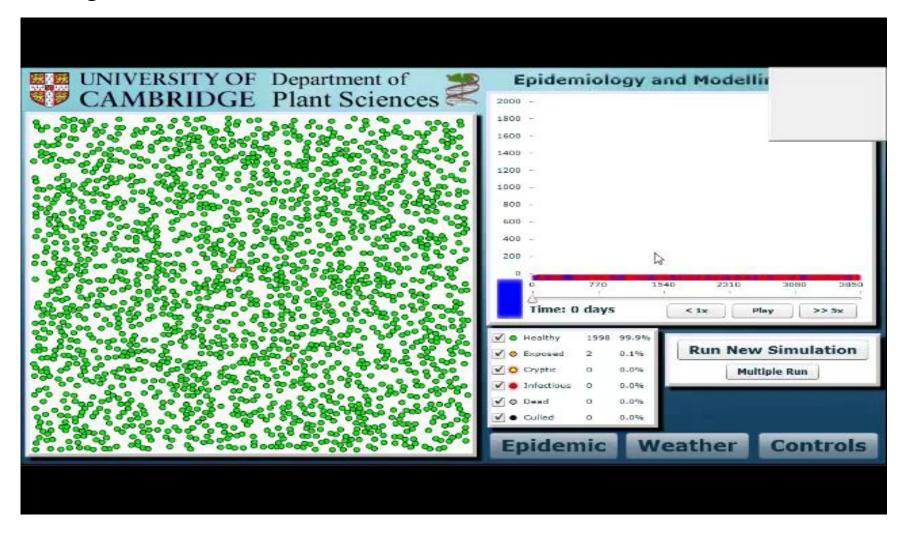
Same result, but no thinking required, instead just mindless (!) calculation

Using R₀ to understand control. Citrus canker



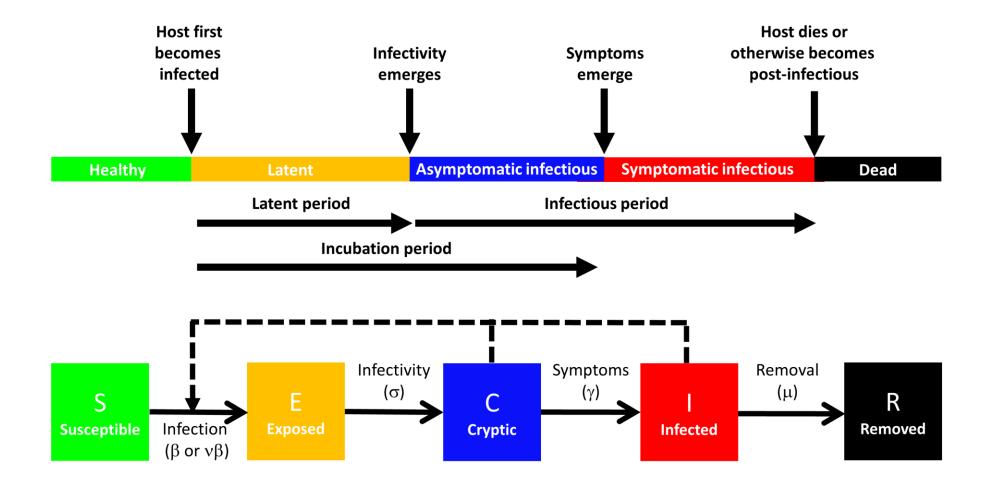
Cunniffe et al. (2015) PLOS Computational Biology. 11:e1004211

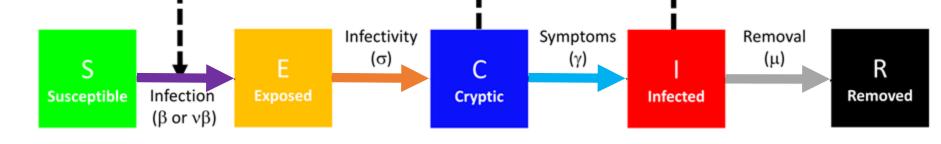
Using R₀ to understand control. Citrus canker



Cunniffe et al. (2015) PLOS Computational Biology. 11:e1004211

Can we use R_0 to see why culling is needed?



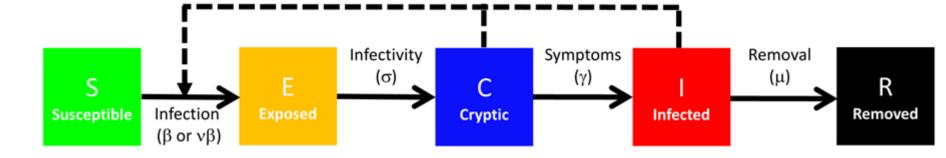


Modelling

Rate of change of Susceptible trees Rate of change of Exposed trees Rate of change of Cryptic trees Rate of change of Infectious trees

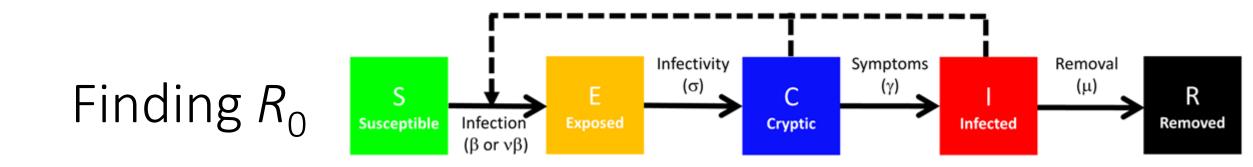
Rate of change of Removed trees = - Infection

- = + Infection Gain of infectivity
- = + Gain of infectivity Emergence of symptoms
- = + Emergence of symptoms Removal (by roguing)
- = + Removal (by roguing)



Modelling

$$\frac{dS}{dt} = -\nu\beta SC - \beta SI$$
$$\frac{dE}{dt} = \nu\beta SC + \beta SI - \sigma E$$
$$\frac{dC}{dt} = \sigma E - \gamma C$$
$$\frac{dI}{dt} = \gamma C - \mu I$$
$$\frac{dR}{dt} = \mu I$$



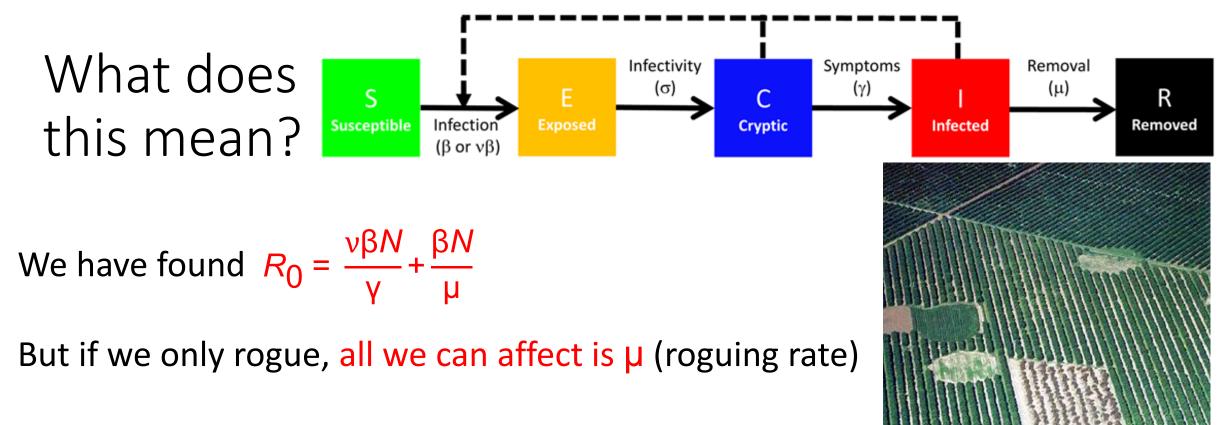
 $\frac{dS}{dt} = -\nu\beta SC - \beta SI$ $\frac{dE}{dt} = \nu\beta SC + \beta SI - \sigma E$ $= \sigma E - \gamma C$ $\frac{dI}{dt} = \gamma C - \mu I$ $dR = \omega I$ $\frac{dt}{dt} = \mu I$

Introduce an infected host to population of size N

Exposed for $1/\sigma$; Cryptic for $1/\gamma$; Infected for $1/\mu$

Causes no infections while Exposed infections at net rate $\nu\beta N$ while Cryptic infections at net rate βN while Infected

$$R_0 = 0 \times \frac{1}{\sigma} + \nu \beta N \times \frac{1}{\gamma} + \beta N \times \frac{1}{\mu}$$



Even if
$$\mu \rightarrow \infty$$
 (very frequent roguing), $R_0 \rightarrow \frac{v\beta N}{\gamma} > 1$

And so cryptic infection means culling is necessary

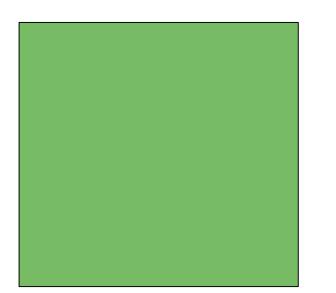
R_0 across space

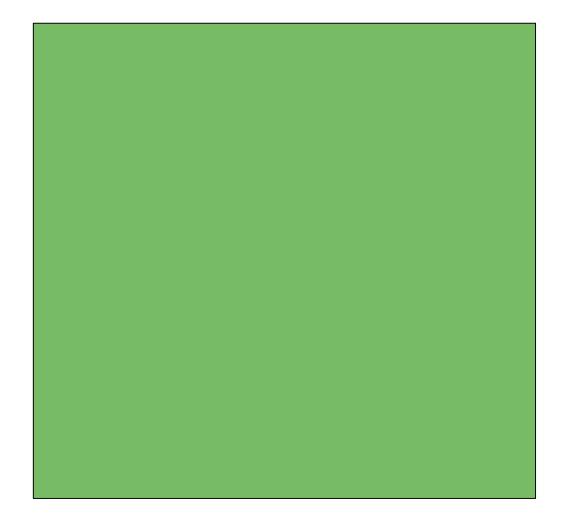
3. cultivated landscapes

1. plants/leaves

2. fields (or orchards)

Is the pathogen more invasive in smaller or larger fields?





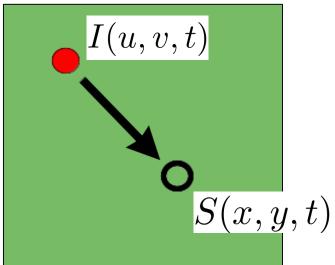
Mikaberidze, Mundt, & Bonhoeffer, *Ecological Applications* 2016

SIR model

$$\frac{dS}{dt} = -\beta/S$$
$$\frac{dI}{dt} = \beta/S - \mu I$$

SIR model, now with space

$$\begin{aligned} \frac{\partial S(x, y, t)}{\partial t} &= -\beta \lambda(x, y) S(x, y, t) \\ \frac{\partial I(x, y, t)}{\partial t} &= \beta \lambda(x, y) S(x, y, t) - \mu I(x, y, t) \end{aligned}$$



$$\frac{\partial S(x, y, t)}{\partial t} = -\beta \lambda(x, y) S(x, y, t)$$
$$\frac{\partial I(x, y, t)}{\partial t} = \beta \lambda(x, y) S(x, y, t) - \mu I(x, y, t)$$

 $=\kappa(r)$ dispersal kernel force of infection

Mikaberidze, Mundt, & Bonhoeffer, Ecological Applications 2016

 $n\alpha$

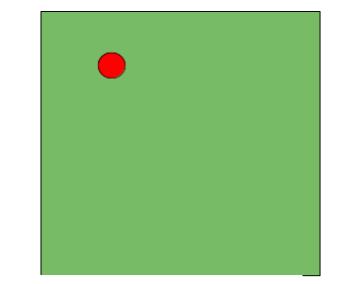
How to calculate R_0 : linear stability of disease-free equilibrium

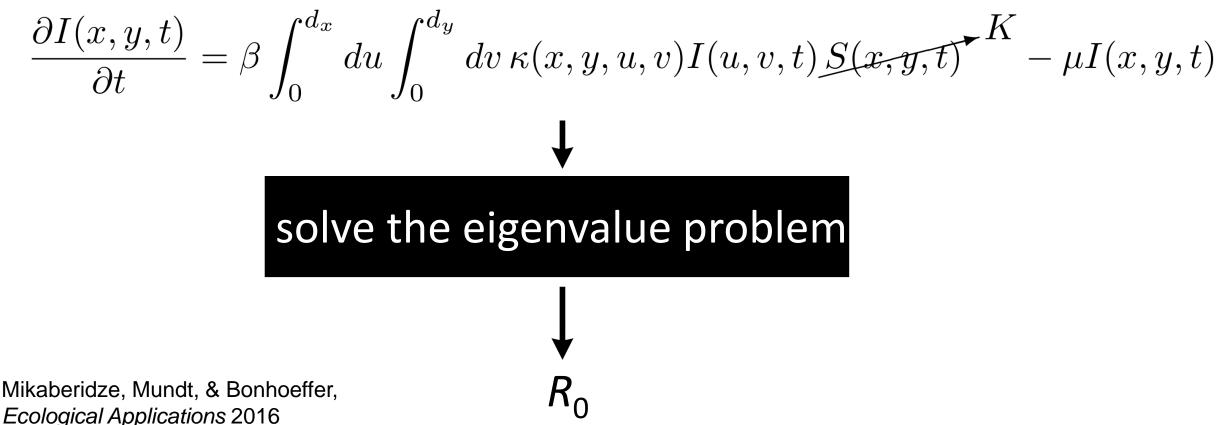
$$I(x, y, t) = 0$$

$$\frac{\partial I(x,y,t)}{\partial t} = \beta \int_0^{d_x} du \int_0^{d_y} dv \,\kappa(x,y,u,v) I(u,v,t) \underbrace{S(x,y,t)}_{K} K - \mu I(x,y,t)$$

How to calculate *R*₀: linear stability of disease-free equilibrium

I(x, y, t) = 0





How to calculate R_0 : linear stability of disease-free equilibrium

I(x, y, t) = 0

$$\frac{\partial I(x, y, t)}{\partial t} = \beta \int_0^{d_x} du \int_0^{d_y} dv \,\kappa(x, y, u, v) I(u, v, t) \underbrace{S(x, y, t)}^K - \mu I(x, y, t)$$

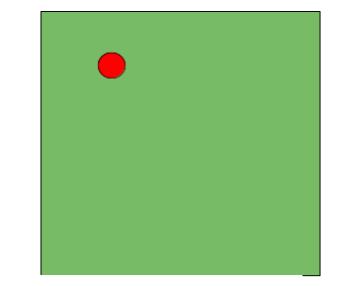
$$\downarrow$$

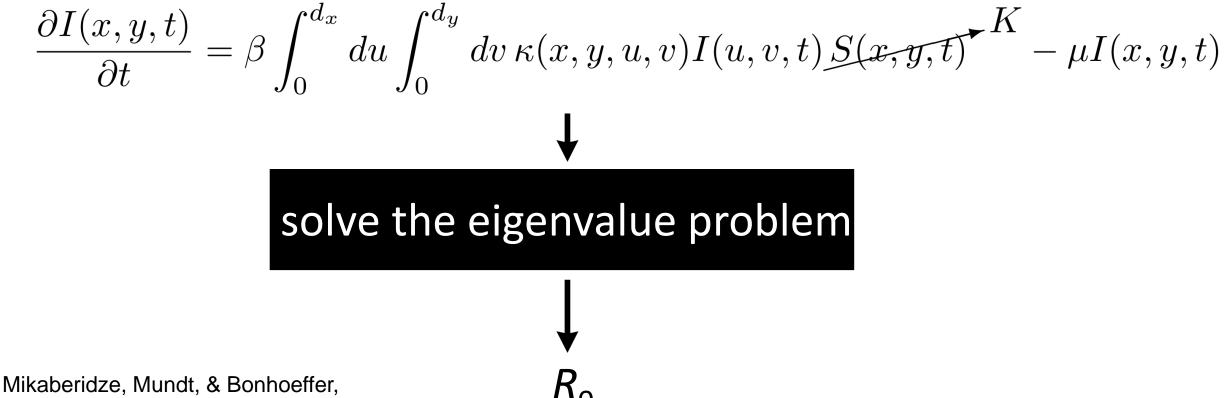
$$I(x, y, t) = w(x, y) e^{\lambda t} \longrightarrow \frac{\beta K}{\mu} \int_0^{d_x} du \int_0^{d_y} dv \,\kappa(r) w(u, v) = \sigma w(x, y)$$

$$\sigma = 1 + \lambda/\mu$$

How to calculate R_0 : linear stability of disease-free equilibrium

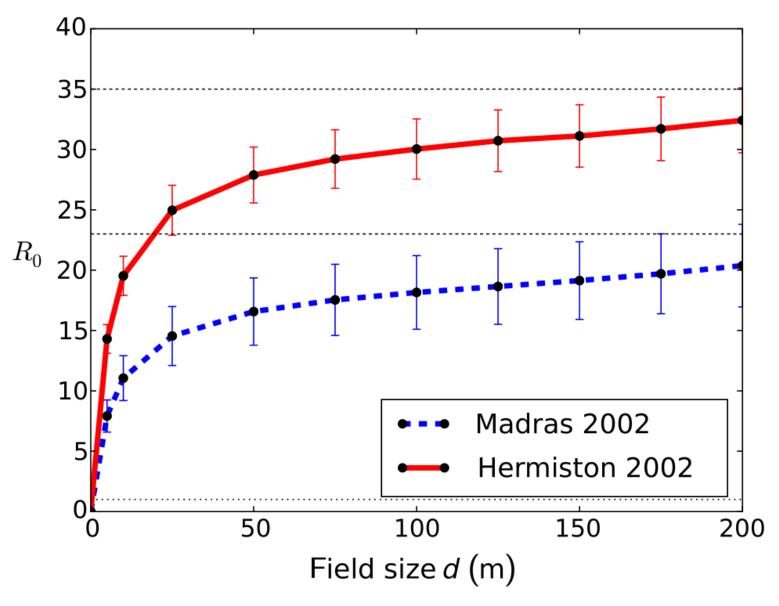
I(x, y, t) = 0



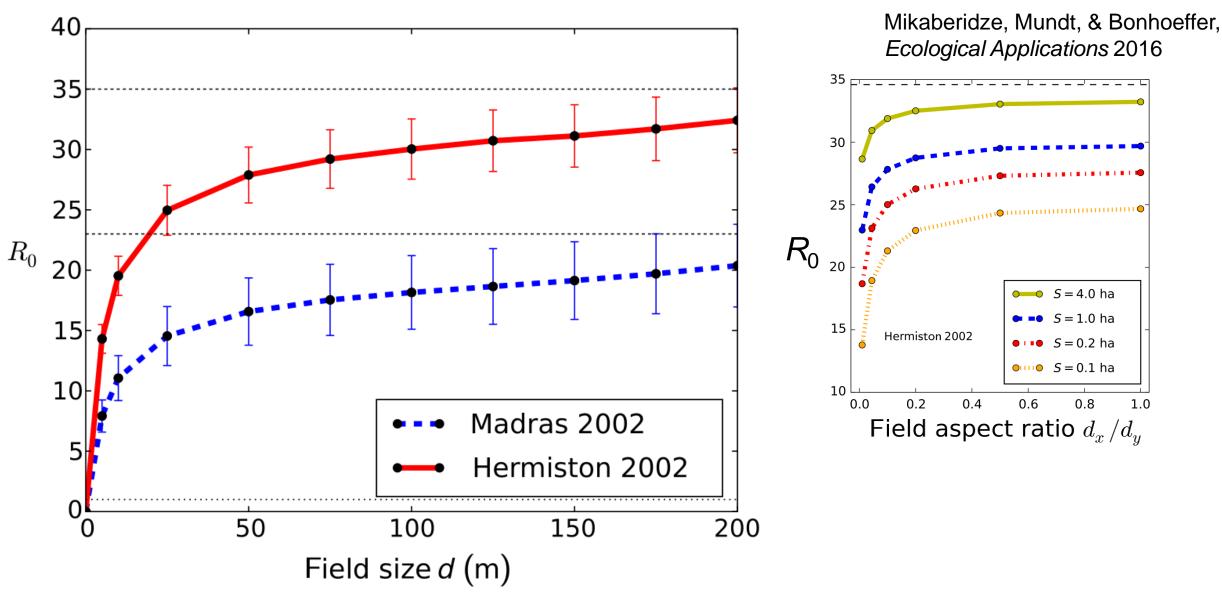


Ecological Applications 2016

Smaller, more elongated wheat fields suppress the invasiveness of the pathogen (R_0) *Puccinia striiformis*



Smaller, more elongated wheat fields suppress the invasiveness of the pathogen (R_0) *Puccinia striiformis*



We can use this insight to impede pathogen adaptation to control measures

resistant cultivar A

resistant cultivar B

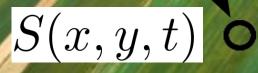
pathogen dispersal

R₀ for cultivated landscapes depends on

landscape connectivity

landscape aggregation

I(u,v,t)



Basic reproduction number R₀ depends on disease triangle

