

MEASURING PLANT STRUCTURE AND FUNCTION USING OPTICAL REMOTE SENSING current status and recent developments of airborne and satellite remote sensing and their potential for disease detection

Uwe Rascher – Research Centre Jülich (Forschungszentrum Jülich), IBG-2: Plant Sciences, Germany 19. AUGUST 2023

Outline

- □ Optical remote sensing measuring with light (photons) and the challenge of scale
- Laboratory studies transferability to the field increasing the scale with drones and aircrafts – possibilities and limitations for satellite based remote sensing
- Disease detection with optical approaches spectrally resolved measurements, fluorescence and thermal approaches
- Possibilities to detect diseases on the large scale the balance between spectral, spatial and temporal resolution
- Direct detection of disease symptoms and confounding factors

Disease detection using spectrally resolved and fluorescence imaging - going back 10-15 years and into the laboratory

 Well-controlled laboratory studies to develop approaches for disease detection with optical sensors

wheat leaves 4 and 8 days after inoculation with *P. triticina*

Leaf Rust on wheat leaves suceptible cultivar, Dekan (left) resistant cultivar, Retro (right)

Katrin Bürling (2010) Potential of fluorescence techniques with special reference to fluorescence lifetime determination for sensing and differentiating biotic and abioticstresses in Triticum aestivum L. – Dissertation University Bonn, Agricultural Faculty

What is light – a concept for the non-physicist

- "Light is a flux of photones, which travel with light speed and which can best be described with a wave function
- Speed of light (c) is constant and is 300 000 km/s

What is light – a concept for the non-physicist

- The amplitude of the wave is ± constant
- The wavelength (λ) describes
 the distance between two
 maxima [measured in m]
- The frequency (v) is the number of oszillations per seconds [measured in Hz]
- $\succ \lambda = c / v$
- The higher the frequency the more energy an electromagnetic radiation carries

What is light – a concept for the non-physicist

Light absorption: Lets have a closer look – what happens if photons interact with a leaf

- Light interacts with pigments photons in the visible spectral window are absorbed by plant pigments
 - Chlorophylls chlorophyll a chlorophyll b
 - Carotenoids
 α carotin
 β carotin
 lutein
 violaxanthin
 antheaxanthin
 - > Anthocyanins
 - Betalaine

Light absorption: Lets have a closer look – what happens if photons interact with a leaf

 S_0

Light absorption means that the energy in the photon is transferred to the pigment, the photon disappears and electrons in the pigment are shifted to the excited state (normally S_1 or S_2)

light

 \mathbf{S}_1

Chl a

IÜLICH

Light absorption: Lets have a closer look – what happens of the photons interact with a leaf

 $Reflection [\%] = \frac{Reflected \ irradiance \ [energy unit]}{Incoming \ irradiance \ [energy unit]}$

 $Transmittance \ [\%] = \frac{Transmitted \ irradiance \ [energy unit]}{Incoming \ irradiance \ [energy unit]}$

Rascher et al. (2010) Sensing of photosynthetic activity of crops. In Precision Crop Protection - the Challenge and Use of Heterogeneity Springer Science+Business Media B.V., doi 10.1007/978-90-481-9277-9_6.

Light absorption: Lets have a closer look – what happens of the photons interact with a leaf

 $Reflection [\%] = \frac{Reflected \ irradiance \ [energy unit]}{Incoming \ irradiance \ [energy unit]}$

 $Transmittance [\%] = \frac{Transmitted irradiance [energy unit]}{Incoming irradiance [energy unit]}$

Light absorption: Lets have a closer look – what happens **JÜLICH** if photons interact with a leaf

8 hours during whichthe healthy leaf(i) dries out and(ii) looses its pigments

Disease infection leaves a characteristic signature in reflectance / transmission / absorbance

Solid line: healthy leaves Dashed lines: *Cercospora beticola* infection on sugar beet

Solid line: healthy leaves Dashed lines: *Cercospora beticola* infection on sugar beet

- Disease infection leaves a characteristic signature in reflectance / transmission / absorbance
- High performance spectroscopy has been shown to detect plant disease symptoms

Bergsträsser et al. (2015) HyperART: non-invasive quantification of leaf traits using hyperspectral absorptionreflectance-transmittance imaging. *Plant Methods, 11:1*, doi:10.1186/s13007-015-0043-0

Vegetation Indices: An easy way to empirically translate spectrally resolved reflectance into plant traits

value range

- 1. Classical greenness indices
 - i. measure chlorophyll and LAI
 - ii. widely used and can be derived from broad band sensors
 - iii. require red and infra-red bands only

Simple Ratio (SR) =
$$\frac{R_{infra-red}}{R_{red}}$$
 0 - 7

$$NDVI = \frac{R_{infra-red} - R_{red}}{R_{infra-red} + R_{red}} \qquad \qquad 0-1$$

Normalized Difference Vegetation Index (NDVI) is independent to additive and multiplicative shifts in the data

Vegetation Indices: An easy way to empirically translate spectrally resolved reflectance into plant traite

- 2. More advanced greenness indices
 - i. measure chlorophyll and LAI
 - ii. can also be used at dense vegetation
 - iii. use smaller spectral windows or additional spectral bands

$$NDVI_{re} = \frac{R_{735-750} - R_{695-710}}{R_{735-750} + R_{695-710}}$$

$$EVI = 2.5 \left[\frac{R_{795-810} - R_{665-680}}{R_{795-810} + 6R_{665-680} - 7.5R_{475-490} + 1} \right]$$

$$TCARI = 3\left[(R_{700\pm4} - R_{670\pm4}) - 0.2(R_{700\pm4} - R_{550\pm4}) \left(\frac{R_{700\pm4}}{R_{670\pm4}}\right) \right]$$

NDVI_{re}: red-edge Normalized Difference Vegetation Index
EVI: Enhanced Vegetation Index
TCARI: Transformed Chlorophyll Absorption Reflectance Index

Vegetation Indices: An easy way to empirically translate spectrally resolved reflectance into plant traite

JÜLICH

- 3. Other plant pigments / components
 - i. large number of 'dedicatd' indices
 - ii. Examples are
 - NDNI: Normalized Difference Nitrogen Index (N absorption at 1510 nm)
 - NDLI: Normalized Difference Lignin Index (lignin absorption at 1754 nm)
 - CAI: Cellulose Absorption Index (absorption at 2000 – 2200 nm)
 - PSRI: Plant Senscence Index (empirically correlated with senescens and fruit ripening)
 -
 - CLSI: Cercospora Leaf Spot Index
 -
 - iii. use with extreme care as many of these indices are not specific

$$CLSI = \frac{R_{698} - R_{570}}{R_{698} + R_{570}} + R_{734}$$

Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U. and Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. *Remote Sensing of Environment* **128**, 21-30.

Light absorption: Lets have a closer look – what happens if photons interact with a leaf

IÜLICH

The origin of fluorescence – an indicator for photosynthetic efficiency

- 1. Chlorophyll molecules emit fluorescence. The intensity of the fluorescence signal is a function of light intensity and the concentration of chlorophyll
- 2. Additionally, the functional status of photosynthesis modulates the intensity of the fluorescence signal

The origin of fluorescence – an indicator for photosynthetic efficiency

- Photosynthesis is a highly regulated process that involves a cascade of electron transfers (*Light reaction*) to fuel carbon fixation (*Calvin cycle*)
- Fluorescence is emitted from the cores of the photosynthetic machinery: Photosystems I and II

The origin of fluorescence – an indicator for photosynthetic efficiency

- Photosynthesis is a highly regulated process that involves a cascade of electron transfers (*Light reaction*) to fuel carbon fixation (*Calvin cycle*)
- Fluorescence is emitted from the cores of the photosynthetic machinery: Photosystems I and II

PSU

FPSI

750

800

Two-peak feature of fluorescence

Leaf fluorescence – two photosystems and two dynamically adapting signals

Biochimica et Biophysica Acta, 462 (1977) 307-313 © Elsevier/North-Holland Biomedical Press

BBA 47380

FLUORESCENCE EMISSION SPECTRA OF PHOTOSYSTEM I, PHOTO-SYSTEM II AND THE LIGHT-HARVESTING CHLOROPHYLL *a/b* COMPLEX OF HIGHER PLANTS

RETO J. STRASSER and WARREN L. BUTLER

Department of Biology, University of California, San Diego, La Jolla, Calif. 92093 (U.S.A.)

Fluorescence techniques are the most widely used approaches to investigate photosynthesis

- Various leaf level instruments available and currently ~750 Papers published per year
- Most methods use active approaches, such as PAM, saturating light pulses or lasers induced fluorescence transients

Quencher E.g. 20- 30 minutes

Rascher et al. (2010) Sensing of photosynthetic activity of crops. In Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer Science+Business Media B.V., doi 10.1007/978-90-481-9277-9 6. Murchie et al. (2018) Annals of Botany, 122, 207-220 Keller et al. (2019) Photosynthesis Research, in press; doi: 0.1007/s11120-018-0594-9.

Fluorescence techniques are the most widely used approaches to investigate photosynthesis

- Various leaf level instruments available and currently ~750
 Papers published per year
- Most methods use active approaches, such as PAM, saturating light pulses or lasers induced fluorescence transients
- Fluorescence techniques are widely used to detect plant diseases
- Pest affect photosynthetic machinery and we can use this link for disease detection

0.50

Barron-Gafford et al. (2012) Herbivory of wild *Manduca sexta* causes fast down-regulation of photosynthetic efficiency in *Datura wrightii*: an early signaling cascade visualized by chloro-phyll *fluorescence*. *Photosyn Res*, *113*, 249-260.

effective quantum yield

 $(\Delta F/F_{m}')$

0.05

Passive remote sensing – optical remote sensing

2000 -

500

0

- Passive remote sensing inherently needs to correct for the path of light through the atmosphere (sun - surface - sensor)
- > Physical modelling ('atmospheric correction')
 - Complex atmospheric conditions (clouds, haze, aerosols, etc.) often complicate the atmospheric correction Solar Radiation (W m⁻² µm⁻¹) 000 1200 1 1

Atmospheric correction, correction for viewing geometry, georegistration and other corrections are normally done by the space agencies. Algorithms have become really good in past years, but they are still not error free

Challenge for disease detection: small features in structurally complex canopies

FFR

FR

Blue

FFR

Rascher et al. (2010) *Precision Crop Protection*, *Springer, ISBN: 978-90-481-9276-2*, pp 87-100

Porcar-Castell et al. (2014) *Journal of Experimental Botany*, doi:10.1093/jxb/eru191

- Disease sympoms are generally very small and only occur on selected organs of a plant.
- These small features, which are visible to the human eye are often obscured by changes in the canopy. Such changes often affect reflectance and fluorescence in a larger degree than disease effects

Multispectral vs hyperspectral satellites

- Every satellite or airborne sensor has a specific sensitivity to spectral bands
- Multispectral satellites measure discrete bands (advantage higher sensitivity as more photons are available in these broad bands)
- Hyperspectral satellites measure a continuous spectrum (advantage to resolve also small spectral differences, but lower signal to noise values)

Multispectral vs hyperspectral satellites

- Every satellite or airborne sensor has a specific sensitivity to spectral bands
- Multispectral satellites measure discrete bands (advantage higher sensitivity as more photons are available in these broad bands)
- Hyperspectral satellites measure a continuous spectrum (advantage to resolve also small spectral differences, but lower signal to noise values)

Existing and future satellite for crop monitoring and precision agriculture

Satellite (year)	Spatial resolution	Spectral resolution	Return frequency	Suitability for PA	Satellite (year)	Spatial resolution	Spectral resolution	Return frequency	Suitability for PA	
Landsat 1/2/3 (1972/75/78)	79 m	4 bands	18 d	L	Landsat 8 (2013)	30 m	9 bands	16 d	М	
Landsat 5 (1984)	30 m	6 bands	16 d	М	SkySat-1/2 (2013/14)	2 m	5 bands	2 d	Н	
SPOT 1/2/3 (1986/90/93)	20 m	3 bands	2-6 d	М	WorldView-3 (2014)	1.24–3.7 m	17 bands	1 d	н	
IRS 1A (1988)	72 m	4 bands	22 d	М	Flock-1 1-28 (2014)	3–5 m	3 bands	1 d	М	
SPOT 4 (1998)	20 m	4 bands	2–6 d	м	Sentinel-2A (2015)	10–60 m	13 bands	10 d	М	
IKONOS (1999)	3.2 m	5 bands	3 d	Н	WorldView-4 (2016)	1.24 m	5 bands	1 d	н	
Landsat 7(1999)	30 m	7 bands	16 d	м	SkySat-3/4/5/6/7 (2016)	2 m	5 bands	1 d	М	
EO-1 Hyperion (2000)	30 m	220 bands	16 d	Н	Sentinel-2B (2017)	10–60 m	13 bands	10 d	М	
EO-1 ALI (2000)	30 m	10 bands	16 d	М	Venµs (2017)	5.3 m	12 bands	2 d	н	
QuickBird (2001)	2.62 m	5 bands	1–4 d	Н	PRISMA (2018)	20–30 m	249 bands	16 d	н	
PROBA/CHRIS (2001)	18–36 m	19 bands	7 d	н	EnMAP (2019)	30 m	242 bands	27 d	н	
SPOT 5 (2002)	10–20 m	5 bands	1-4 d	М	HISUI MS (2019)	5 m	4 bands	60 d	М	
RapidEye (2008)	6.5 m	5 bands	1 d	н	HISUI HS (2019)	30 m	185 bands	60 d	н	
GeoEye-1 (2008)	1.6 m	6 bands	2–8 d	Н	Landsat 9 (2020)	30 m	9 bands	16 d	М	existing / past
WorldView-2 (2009)	1.84 m	8 bands	1.1 d	н	HyspIRI (2022)	30 m	214 bands	16 d	н	future
Pleiadis-1A/B (2011/12)	2 m	5 bands	1 d	Н	FLEX (2022)	300 m	-	30 d	М	
SPOT 6/7 (2012/14)	6 m	5 bands	1 d	н	Sentiel-2C/D (???)	10–60 m	13 bands	10 d	М	

Existing and future satellite for crop monitoring and precision agriculture

Satellite (year)	Spatial resolution	Spectral resolution	Return frequency	Suitability for PA	Satellite (year)	Spatial resolution	Spectral resolution	Return frequency	Suitability for PA	
Landsat 1/2/3 (1972/75/78)	79 m	4 bands	18 d	L	Landsat 8 (2013)	30 m	9 bands	16 d	М	
Landsat 5 (1984)	30 m	6 bands	16 d	М	SkySat-1/2 (2013/14)	2 m	5 bands	2 d	Н	
SPOT 1/2/3 (1986/90/93)	20 m	3 bands	2-6 d	М	WorldView-3 (2014)	Tech	nical f	feasib	ility de	efines the
IRS 1A (1988)	72 m	4 bands	22 d	Μ	Flock-1 1-28 (2014)	noss	ibility	scien	tific re	auest define
SPOT 4 (1998)	20 m	4 bands	2–6 d	М	Sentinel-2A (2015)	the h	alanc	o hotu	voon	
IKONOS (1999)	3.2 m	5 bands	3 d	н	WorldView-4 (2016)					
Landsat 7(1999)	30 m	7 bands	16 d	М	SkySat-3/4/5/6/7 (2016)	(I) sp		esolu	lion	
EO-1 Hyperion (2000)	30 m	220 bands	16 d	н	Sentinel-2B (2017)	(ii) ni	umbe	r of sp	ectral	bands, and
EO-1 ALI (2000)	30 m	10 bands	16 d	М	Venµs (2017)	(iii) re	evisiti	ng tim	e (retu	urn frequency)
QuickBird (2001)	2.62 m	5 bands	1–4 d	н	PRISMA (2018)	20–30 m	249 bands	16 d	Н	
PROBA/CHRIS (2001)	18–36 m	19 bands	7 d	н	EnMAP (2019)	30 m	242 bands	27 d	н	
SPOT 5 (2002)	10–20 m	5 bands	1-4 d	М	HISUI MS (2019)	5 m	4 bands	60 d	М	
RapidEye (2008)	6.5 m	5 bands	1 d	н	HISUI HS (2019)	30 m	185 bands	60 d	н	
GeoEye-1 (2008)	1.6 m	6 bands	2–8 d	н	Landsat 9 (2020)	30 m	9 bands	16 d	М	existing / past
WorldView-2 (2009)	1.84 m	8 bands	1.1 d	н	HyspIRI (2022)	30 m	214 bands	16 d	н	future
Pleiadis-1A/B (2011/12)	2 m	5 bands	1 d	Н	FLEX (2022)	300 m	-	30 d	М	
SPOT 6/7 (2012/14)	6 m	5 bands	1 d	н	Sentiel-2C/D (???)	10–60 m	13 bands	10 d	М	

ESA's Earth Observation satellites

esa

Satellites

ESA-DEVELOPED EARTH OBSERVATION MISSIONS

FLEX Satellite Mission will become the 8th Earth Explorer of ESA

FLEX will quantify actual photosynthetic activity of terrestrial ecosystems

FLEX will provide **physiological indicators** for vegetation health status

by direct measurements of **vegetation fluorescence** at 300x300 meters every 10-25 days

FLEX Satellite Mission will be launched mid 2025 and become the 8th Earth Explorer of ESA

Local solar time: 10:00 LTDN

Temporal co-registration: < 6s (G) / 15s (T)

Spatial coverage: -56 to 75 degree latitude, land + major islands, coastal zones 50 km

Revisit time: up to 19 days

Spatial resolution: 90000 m²

SLSTR NADIR (1420 km) OLCI NADIR (1270 km) SLSTR backward (750 km) FLORIS (150 km)

FLEX Satellite Mission – a tandem concept with Sentinel-3

Average revisit time (days)

Number of acquisitions within a repeat cycle

- FLEX will acquire images of all land between 56° S to 75° N, including major islands and coastal areas
- > 300 x 300 meter pixels
- Launch is scheduled for 2023
- Full coverage every 27 days

Average revisit time:

- 27 days at Equator
- ~ 20 days at Tropics
- ~ 10 to 15 days over Europe and Canada
- ~ 5 to 10 days over boreal forests

HyPlant: A high-resolution airborne imaging spectrometer with FLEX like measurement characteristics

Rascher et al. (2015) *Global Change Biology, 21*, 4673–4684

DUAL module (380 – 2500 nm) VIS/NIR: 3-4 nm FWHM, 1.7 nm SSI, SNR > 510 SWIR: 13 nm FWHM, 5.5 nm SSI, SNR > 1100

FLUO module (670 – 780 nm) 0.25 nm FWHM, 0.11 nm SSI, SNR > 250

Various improvement and now consolidated version (HyPlant_3)

HyPlant complemented by thermal imager (TASI) and LIDAR system (since 2018 campaign)

TASI-600

- Hyperspectral thermal sensor (8 11.5 μm)
- Field of view alligned with HyPlant sensor
- Operated in synchrony with HyPlant

LIDAR (Riegl LMS-Q780)

- Long range laser scanner
- Full-waveform echo digitalization and analysis

Sensor	Riegl LMS-Q780				
Max. Pulse Repetition Rate [kHz]	400				
Max. Operating Altitude [m]	5800				
Wavelength [nm]	1064				
Max. Laser Beam Divergence [mrad]	0.25				
FOV [°]	60				
Eye Safety Class	Laser Class 3B				
Min. Operating Altitude	50m				

Sensor	TASI-600
Spectral Region	LWIR
Sensor Type	Pushbroom Hyperspectral TIR
Spectral Bands	32
Spectral Range [nm]	8 000 - 11 500
Number of Spatial Pixels	600
Max. Spectral Resolution [nm]	110
FOV [°]	40
IFOV [°]	0.07
Dynamic Range	14-bits (16384:1)
Burst Data Rate	5 Mpix/sec
NEDT	TASI-600/32: 0.11° C @ 100° C
Spectral Smile	TASI-600/32: < ±0.25 pixels
Keystone Distortion	TASI-600/32: < ±0.25 pixels

Vegetation stress during summer heat wave [Yang et al (2019) Rem. Sens. Environ., doi: 10.1016/j.rse.2018.11.039]

- Vegetation stress during summer heat wave [Yang et al (2019) Rem. Sens. Environ., doi: 10.1016/j.rse.2018.11.039]
- Water availability of deeper soil layers are mapped in fluorescence signal [von Hebel et al (2018) Geophys. Res Lett., 45,]

- Vegetation stress during summer heat wave [Yang et al (2019) Rem. Sens. Environ., doi: 10.1016/j.rse.2018.11.039]
- Water availability of deeper soil layers are mapped in fluorescence signal [von Hebel et al (2018) Geophys. Res Lett., 45,]
- F₆₉₀ reflects tree age, while F₇₄₀ is constant in Loblolly pine stands of different age [Middleton et al (2017) Remote Sensing, 9, article no. 612] [Colombo et al. (2018) Global Change Biology, 24, 2980-2996]

- Vegetation stress during summer heat wave [Yang et al (2019) Rem. Sens. Environ., doi: 10.1016/j.rse.2018.11.039]
- Water availability of deeper soil layers are mapped in fluorescence signal [von Hebel et al (2018) Geophys. Res Lett., 45,]
- F₆₉₀ reflects tree age, while F₇₄₀ is constant in Loblolly pine stands of different age [Middleton et al (2017) Remote Sensing, 9, article no. 612] [Colombo et al. (2018) Global Change Biology, 24, 2980-2996]
- F₆₈₇ is not related with GPP and APAR; F₇₆₀ is positively, but nonlinearly related to GPP and APAR in the spatial domain. [Tagliabue et al. (2019) Rem. Sens. Environ., 231, article no. 111272]

- Vegetation stress during summer heat wave [Yang et al (2019) Rem. Sens. Environ., doi: 10.1016/j.rse.2018.11.039]
- Water availability of deeper soil layers are mapped in fluorescence signal [von Hebel et al (2018) Geophys. Res Lett., 45,]
- F₆₉₀ reflects tree age, while F₇₄₀ is constant in Loblolly pine stands of different age [Middleton et al (2017) Remote Sensing, 9, article no. 612] [Colombo et al. (2018) Global Change Biology, 24, 2980-2996]
- No dedicated disease mapping / detection / identification campaigns or projects, yet.
- We are just preparing for first data acquisition over a disease field trail in Göttingen (cooperation with A. Mahlein)

Proximity sensing: Advanced technologies (sensors and data processing techniques) nowadays open the possibility for reliable disease detection

But we

- need to get beyond vegetation indices, i.e. use the full information, which we have available from novel sensors
- Be clear what are direct signals emerging from the disease and what are correlated effects that obscure the disease signal

Proximity sensing: Advanced technologies (sensors and data processing techniques) nowadays open the possibility for reliable disease detection

But we

- need to get beyond vegetation indices, i.e. use the full information, which we have available from novel sensors
- Be clear what are direct signals emerging from the disease and what are correlated effects that obscure the disease signal

- Airborne sensing: UAV-based are booming, while airborne sensors are on the decline.
- Same considerations as before, additionally
 - Data quality of UAV based sensors is often limiting
 - Often naïve use of e.g. machine learning
 - Airborne sensors are important to close the gap to satellites
 - New measurement options which potential for disease detection may still be explored

Kneer et al (2023) A snapshot imaging system for the measurement of solar-induced chlorophyll fluorescence – addressing the challenges of high-performance spectral imaging for mapping SIF. *IEEE* – *Sensors, online first;* 10.1109/JSEN.2023.3297054

Satellite sensing: Satellite data are nowadays of high quality and easy to use. But still a trade-off between

spectral performance spatial resolution and revisiting time

https://scihub.copernicus.eu/

Satellite sensing: Satellite data are nowadays of high quality and easy to use. But still a trade-off between spectral performance

spatial resolution and revisiting time

https://apps.sentinel-hub.com/eo-browser/

Summary – u.rascher@fz-juelich.de / 0170-2219199

- Disease symptoms are complex and already at the close range (proximity sensing) a meaningful combination of spectrally resolved data, covering the right range and advanced data processing is needed
- Small scale symptoms are often obscured on the larger scale and hidden correlations may hamper diseases detection from the distance
- Combination of spectrally resolved reflectance, fluorescence and thermal approaches shall be further exploited
- Combination of ground based systems (high temporal resolution and specifity) with airborne & satellite data (large coverage) is needed

Many thanks to my group

Many thanks to the numerous partners

