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Vegetation Indices – 50 years ago

Tucker, Miller and Pearson (1973)
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Hand-held spectral
devices



Integrating spheres for measuring
the leaf optical properties – R & T
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properties –
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Empirical methods

Leaf Thickness
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Empirical relationships: indices vs. leaf traits



Empirical relationships: indices vs. leaf traits
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1. Robustness of empirical relationships
 species / phenology / architecture

Main limitations of empirical models
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Red edge vs. Ca+b

Empirical relationships indices vs. leaf traits
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B1 B2

Red edge vs. Ca+b

Empirical relationships indices vs. leaf traits

Species
Phenology
Age



1. Robustness of empirical relationships
 species / phenology / architecture
 RS indices for disease detection

are species- & site-specific

Main limitations of empirical models

2. Account for the canopy structure



Leaf Level

Canopy Level

Leaf ≠ Canopy







Large differences in the leaf and canopy 
optical properties



Large differences in the leaf and canopy 
optical properties



1. Robustness of empirical relationships
 species / phenology / architecture
 RS indices for disease detection

are species- & site-specific

Main limitations of empirical models

2. Account for the canopy structure

Physically-based 
plant trait retrievals
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Plate Models

Models based on Spheric Particles

Stocastic Models

I
c

I
d

J
c

J
d

I
0 


s = scattering coefficient

k = absorption coefficient

Models N-Flux

Radiative Transfer Theory

Ray Tracing Models (Monte Carlo)

Progress on Leaf

RT Models:        

from plate models

to 3D simulations



PROSPECT
(Jacquemoud & Baret, 1990)

Separation of total chlorophylls 
from total carotenoids

PROSPECT-5
(Feret et al., 2008)

Anthocyanins, chlorophylls and 
carotenoids
PROSPECT-D

(Feret et al., 2017)

Xanthophyll dynamics
Fluspect-CX

(Vilfan et al., 2018)

Leaf proteins and other carbon-
based constituents

PROSPECT-PRO
(Feret et al., 2021)

Progress on leaf Radiative Transfer modelling



Canopy RT simulation models

From SAIL to DART / SCOPE RT models



Model-retrieved 
Plant Traits

Linked leaf-canopy simulation models

Spectra

Image

Ca+b

Cx+c

Anth

Cw

Cm

LAI
LIDF

Index-based 
empirical 
models



Model-retrieved 
Plant Traits

Linked leaf-canopy simulation models

Leaf Model

Spectra

Image
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Functioning

- Gs / Transpiration
- Assimilation rates
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Mohammed et al. (2019)

SIF 
quantification:  
50 years of 
progress



SIF 
quantification:  
50 years of 
progress

Mohammed et al. (2019)



Solar-induced Chlorophyll
Fluorescence (SIF)

 ~2% of the total incoming radiation
 Linked to photosynthesis
High spectral resolution required
Early indicator of stress

SIF



Fraunhofer lines
dark features (absorption lines) in the optical 
spectrum of the Sun



Fraunhofer lines

Fluorescence 
emission region

Fluorescence emission



Model-retrieved 
Plant Traits

Plant traits quantification using Radiative Transfer models

Leaf Model

Spectra

Image
CWSI

Ca+b

Cx+c

Anth

Cw

Cm

SIF
Vcmax

LAI
LIDF

Canopy Model

Photosynthetic 
pigments

Water & dry 
matter content

Fluorescence & 
photosynthesis

Structural 
traits

Canopy temp. & 
transpiration



1. Non site-specific algorithms
2. Robust across species
3. Measurable
4. Physiological meaning

Main advantages of quantifying plant 

traits



Fluorescence emission

Biotic / 
abiotic 
stress 

detection



Using plant traits and plant functioning indicators for
biotic-induced stress detection

 Xylella fastidiosa

 Verticillium dahliae

 Phytophtora

 Red leaf blotch

 Mildew

 Yellow rust

 Pine wood nematode 
(PWN)

 Early detection vs damage

 Disentangling Biotic vs 
Abiotic stress indicators



Spectral plant traits for biotic-induced detection

Asymptomatic Initial Severe

Transpiration

Fluorescence emission

Photosynthetic pigments

Structural changes



Asymptomatic Initial Severe

Structural changes

Photosynthetic pigments

Fluorescence emission

Transpiration

Spectral plant traits for biotic-induced detection



Asymptomatic Initial Severe

Structural changes

Photosynthetic pigments

Fluorescence emission

Transpiration

Damage mapping

Spectral plant traits for biotic-induced detection



Asymptomatic Initial Severe

Structural changes

Photosynthetic pigments

Fluorescence emission

Transpiration

Early detection

Spectral plant traits for biotic-induced detection



Disease detection framework from hyperspectral data

Mechanistic models 



Disease detection framework from hyperspectral data

Importance of each 
RS-based indicator

Spectral indicators

Mechanistic models 
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Mechanistic models 

Machine 
Learning

Disease
detection

Disease detection framework from hyperspectral data

Importance of each 
RS-based indicator

Spectral indicators



Asymp Initial

Low Moderate

Severe

Calderon et al. (2013; 2015)

Early Detection of Verticillium wilt in Olive

OA=70-80%



Phytophtora-induced
symptoms detection 80% accuracy

Hornero et al. (2021)



Biochemical constituents

SIF

Transpiration trait

Structural traits

Spectral traits

Spectral plant traits Spectral functional groups

Sensitivity of Plant Traits to Xf symptoms - olive

Overall accuracy = 80%
Kappa=0.65
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Understanding abiotic stress to
improve biotic stress detection



Transpiration - Temperature

T
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Gates (1968)
Jackson et al. (1977)

Evaporative

cooling

H2O

CO2
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Confounding effects with water stress
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Water stress Nitrogen %

Wang et al. (2022)1200 ha almond orchard, VIC (AU)





Importance of plant traits to detect water stress as a function of stress levels

Zarco-Tejada et al. (2021)



Dynamics of thermal & hyperspectral with water stress

• At early stages, thermal is the most 
important water stress indicator

• As water stress  the relative importance 
of thermal 

• After thermal, hyperspectral traits 
showed high sensitivity to water stress:

 Ca+b, Cx  importance with water 
stress

• Thermal and SIF  inverse trends with 
increasing water stress levels

Zarco-Tejada et al. (2021)



RS traits are species- and pathogen-
specific



Olive Almond

Importance of 
Xf-sensitive 
spectral traits in 
olive vs. almond
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Olive Almond

Importance of 
Xf-sensitive 
spectral traits in 
olive vs. almond



Hyperspectral 
indicators are 
species-specific 
(almond vs olive)
and pathogen-
specific (Xf vs Vd)

Accuracy > 92%

Zarco-Tejada et al. (2021)



Need for hyperspectral data ?



Hyperspectral traits

Sensitivity of Plant Traits to Xf symptoms

Machine learning

Standard 
RGB camera

12-band
Multispectral

camera

Hyperspectral
camera

Xf-induced
symptom detection

Poblete et al. (2020; 2021; 2023)
Zarco-Tejada et al. (2018)
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Hyperspectral traits

Sensitivity of Plant Traits to Xf symptoms

Machine learning

Standard 
RGB camera

12-band
Multispectral

camera

Hyperspectral
camera

Poblete et al. (2020; 2021; 2023)
Zarco-Tejada et al. (2018)

Xf-induced
symptom detection



Conclusions & Final Remarks

1. Progress made is the last 20 years with hyperspectral & thermal data for biotic-induced 
stress detection across species (OA>0.8-0.9; k>0.6)

2. Traits (RT) critical for robust detection of stress (avoiding site-specific empirical models)

3. Species-specific spectral indicators & traits identified for Xf-, Vd- and Ph-induced 
symptoms (CWSI, NPQI, Anth, Xanth, SIF and PRIn)

4. Quantifying the abiotic status is critical for improved detection of biotic stress:
• Almond: OA: 83% (κ=0.65)  94% (κ=0.87) 
• Olive: OA: 77% (κ=0.43)  92% (κ=0.83)

5. Airborne (thousands of hectares) / drone (hundreds of hectares) hyperspectral and 
thermal imagery can be used for early disease detection and monitoring

6. Satellite data (commercial & Sentinel-2) can be used for disease monitoring at medium /
advanced severity levels  failing to detect biotic stress at early stages
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