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Vegetation Indices – 50 years ago

Tucker, Miller and Pearson (1973)
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Hand-held spectral
devices



Integrating spheres for measuring
the leaf optical properties – R & T



Leaf optical
properties –

R & T
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Empirical methods

Leaf Thickness
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Empirical relationships: indices vs. leaf traits



Empirical relationships: indices vs. leaf traits
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Cx+c
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1. Robustness of empirical relationships
 species / phenology / architecture

Main limitations of empirical models
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Red edge vs. Ca+b

Empirical relationships indices vs. leaf traits
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B1 B2

Red edge vs. Ca+b

Empirical relationships indices vs. leaf traits

Species
Phenology
Age



1. Robustness of empirical relationships
 species / phenology / architecture
 RS indices for disease detection

are species- & site-specific

Main limitations of empirical models

2. Account for the canopy structure



Leaf Level

Canopy Level

Leaf ≠ Canopy







Large differences in the leaf and canopy 
optical properties



Large differences in the leaf and canopy 
optical properties



1. Robustness of empirical relationships
 species / phenology / architecture
 RS indices for disease detection

are species- & site-specific

Main limitations of empirical models

2. Account for the canopy structure

Physically-based 
plant trait retrievals
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Plate Models

Models based on Spheric Particles

Stocastic Models

I
c

I
d

J
c

J
d

I
0 


s = scattering coefficient

k = absorption coefficient

Models N-Flux

Radiative Transfer Theory

Ray Tracing Models (Monte Carlo)

Progress on Leaf

RT Models:        

from plate models

to 3D simulations



PROSPECT
(Jacquemoud & Baret, 1990)

Separation of total chlorophylls 
from total carotenoids

PROSPECT-5
(Feret et al., 2008)

Anthocyanins, chlorophylls and 
carotenoids
PROSPECT-D

(Feret et al., 2017)

Xanthophyll dynamics
Fluspect-CX

(Vilfan et al., 2018)

Leaf proteins and other carbon-
based constituents

PROSPECT-PRO
(Feret et al., 2021)

Progress on leaf Radiative Transfer modelling



Canopy RT simulation models

From SAIL to DART / SCOPE RT models



Model-retrieved 
Plant Traits

Linked leaf-canopy simulation models

Spectra

Image

Ca+b

Cx+c

Anth

Cw

Cm

LAI
LIDF

Index-based 
empirical 
models



Model-retrieved 
Plant Traits

Linked leaf-canopy simulation models

Leaf Model

Spectra

Image
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Canopy Model
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Functioning

- Gs / Transpiration
- Assimilation rates
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Mohammed et al. (2019)

SIF 
quantification:  
50 years of 
progress
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quantification:  
50 years of 
progress

Mohammed et al. (2019)



Solar-induced Chlorophyll
Fluorescence (SIF)

 ~2% of the total incoming radiation
 Linked to photosynthesis
High spectral resolution required
Early indicator of stress

SIF



Fraunhofer lines
dark features (absorption lines) in the optical 
spectrum of the Sun



Fraunhofer lines

Fluorescence 
emission region

Fluorescence emission



Model-retrieved 
Plant Traits

Plant traits quantification using Radiative Transfer models

Leaf Model

Spectra

Image
CWSI

Ca+b

Cx+c

Anth

Cw

Cm

SIF
Vcmax

LAI
LIDF

Canopy Model

Photosynthetic 
pigments

Water & dry 
matter content

Fluorescence & 
photosynthesis

Structural 
traits

Canopy temp. & 
transpiration



1. Non site-specific algorithms
2. Robust across species
3. Measurable
4. Physiological meaning

Main advantages of quantifying plant 

traits



Fluorescence emission

Biotic / 
abiotic 
stress 

detection



Using plant traits and plant functioning indicators for
biotic-induced stress detection

 Xylella fastidiosa

 Verticillium dahliae

 Phytophtora

 Red leaf blotch

 Mildew

 Yellow rust

 Pine wood nematode 
(PWN)

 Early detection vs damage

 Disentangling Biotic vs 
Abiotic stress indicators



Spectral plant traits for biotic-induced detection

Asymptomatic Initial Severe

Transpiration

Fluorescence emission

Photosynthetic pigments

Structural changes



Asymptomatic Initial Severe

Structural changes

Photosynthetic pigments

Fluorescence emission

Transpiration

Spectral plant traits for biotic-induced detection



Asymptomatic Initial Severe

Structural changes

Photosynthetic pigments

Fluorescence emission

Transpiration

Damage mapping

Spectral plant traits for biotic-induced detection



Asymptomatic Initial Severe

Structural changes

Photosynthetic pigments

Fluorescence emission

Transpiration

Early detection

Spectral plant traits for biotic-induced detection



Disease detection framework from hyperspectral data

Mechanistic models 
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Importance of each 
RS-based indicator

Spectral indicators

Mechanistic models 
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Mechanistic models 

Machine 
Learning

Disease
detection

Disease detection framework from hyperspectral data

Importance of each 
RS-based indicator

Spectral indicators



Asymp Initial

Low Moderate

Severe

Calderon et al. (2013; 2015)

Early Detection of Verticillium wilt in Olive

OA=70-80%



Phytophtora-induced
symptoms detection 80% accuracy

Hornero et al. (2021)



Biochemical constituents

SIF

Transpiration trait

Structural traits

Spectral traits

Spectral plant traits Spectral functional groups

Sensitivity of Plant Traits to Xf symptoms - olive

Overall accuracy = 80%
Kappa=0.65
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Understanding abiotic stress to
improve biotic stress detection



Transpiration - Temperature

T

T
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CO2

Gates (1968)
Jackson et al. (1977)

Evaporative

cooling

H2O

CO2
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Water stress Nitrogen %

Wang et al. (2022)1200 ha almond orchard, VIC (AU)





Importance of plant traits to detect water stress as a function of stress levels

Zarco-Tejada et al. (2021)



Dynamics of thermal & hyperspectral with water stress

• At early stages, thermal is the most 
important water stress indicator

• As water stress  the relative importance 
of thermal 

• After thermal, hyperspectral traits 
showed high sensitivity to water stress:

 Ca+b, Cx  importance with water 
stress

• Thermal and SIF  inverse trends with 
increasing water stress levels

Zarco-Tejada et al. (2021)



RS traits are species- and pathogen-
specific



Olive Almond

Importance of 
Xf-sensitive 
spectral traits in 
olive vs. almond
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Olive Almond

Importance of 
Xf-sensitive 
spectral traits in 
olive vs. almond



Hyperspectral 
indicators are 
species-specific 
(almond vs olive)
and pathogen-
specific (Xf vs Vd)

Accuracy > 92%

Zarco-Tejada et al. (2021)



Need for hyperspectral data ?



Hyperspectral traits

Sensitivity of Plant Traits to Xf symptoms

Machine learning

Standard 
RGB camera

12-band
Multispectral

camera

Hyperspectral
camera

Xf-induced
symptom detection

Poblete et al. (2020; 2021; 2023)
Zarco-Tejada et al. (2018)
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Hyperspectral traits

Sensitivity of Plant Traits to Xf symptoms

Machine learning

Standard 
RGB camera

12-band
Multispectral

camera

Hyperspectral
camera

Poblete et al. (2020; 2021; 2023)
Zarco-Tejada et al. (2018)

Xf-induced
symptom detection



Conclusions & Final Remarks

1. Progress made is the last 20 years with hyperspectral & thermal data for biotic-induced 
stress detection across species (OA>0.8-0.9; k>0.6)

2. Traits (RT) critical for robust detection of stress (avoiding site-specific empirical models)

3. Species-specific spectral indicators & traits identified for Xf-, Vd- and Ph-induced 
symptoms (CWSI, NPQI, Anth, Xanth, SIF and PRIn)

4. Quantifying the abiotic status is critical for improved detection of biotic stress:
• Almond: OA: 83% (κ=0.65)  94% (κ=0.87) 
• Olive: OA: 77% (κ=0.43)  92% (κ=0.83)

5. Airborne (thousands of hectares) / drone (hundreds of hectares) hyperspectral and 
thermal imagery can be used for early disease detection and monitoring

6. Satellite data (commercial & Sentinel-2) can be used for disease monitoring at medium /
advanced severity levels  failing to detect biotic stress at early stages
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