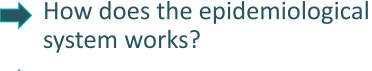


Multi-scale spatial genetic structure of the vector-borne pathogen 'Candidatus Phytoplasma prunorum' in orchards and in wild habitats

V. Marie-Jeanne, F. Bonnot, <u>G. Thébaud</u>, J. Peccoud, G. Labonne, N. Sauvion

Spatial molecular epidemiology of ESFY 14/12/2020 • Symposium ModStatSAP 2020 • Gaël THEBAUD

Scales of pathogen dispersal across compartments


Why does it matter?

• Types of compartments

- wild hosts
- domestic hosts
- vectors

Scales of dispersal

- neighboring hosts
- neighboring host groups
- within a region
- across regions

• What control measures?

- What is the appropriate control scale?
 - What should be controlled?

Spatial molecular epidemiology of ESFY

Scales of pathogen dispersal across compartments

How to study these processes?

Molecular epidemiology

- genetic diversity
- spatial structure
- informative patterns
- genericity

From patterns to processes

Specifying null hypotheses

- genetics is independent of the region
- genetics is independent of the compartment
- genetic distance is independent of spatial distance

Spatial molecular epidemiology of ESFY

> European stone fruit yellows (ESFY) pathosystem

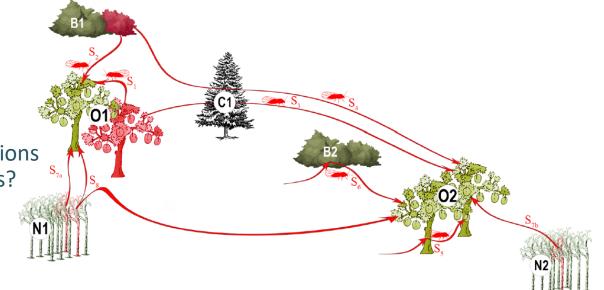
- Pathogen: 'Candidatus Phytoplasma prunorum' (intracellular bacteria)
- Infected plants: cultivated (apricot, plum) & wild (blackthorn) Prunus
- Symptoms: physiological disorder, yellowing, leaf curling, death

Spatial molecular epidemiology of ESFY 14/12/2020 • Symposium ModStatSAP 2020 • Gaël THEBAUD

INRA

> European stone fruit yellows (ESFY) pathosystem

- Pathogen: 'Candidatus Phytoplasma prunorum' (intracellular bacteria)
- Infected plants: cultivated (apricot, plum) & wild (blackthorn) Prunus
- Symptoms: physiological disorder, yellowing, leaf curling, death
- Transmission: infected planting material & vector-borne
- Vector: Cacopsylla pruni, a psyllid of Prunus (blackthorn, plum)



INRAØ

Spatial molecular epidemiology of ESFY

> European stone fruit yellows (ESFY) pathosystem

- Pathogen: 'Candidatus Phytoplasma prunorum' (intracellular bacteria)
- Infected plants: cultivated (apricot, plum) & wild (blackthorn) Prunus
- Symptoms: physiological disorder, yellowing, leaf curling, death
- Transmission: infected planting material & vector-borne
- Vector: Cacopsylla pruni, a psyllid of Prunus (blackthorn, plum)
- Are there local acquisitiontransmission cycles?
- What is the spatial scale of transmissions between years?
- Are there successive transmissions within or across compartments?
- Do nurseries contribute to the regional or national spread?

INRAe

Spatial molecular epidemiology of ESFY

Sampling

- 3 regions
- 3 compartments

Genetics

- 'Ca. P. Prunorum' : clonal, small genome (630 kb)
- sequences from the ~500 kb imp locus
- frequency of 6 major haplotypes

Haplotype	PO			BR			VA			
	Bush	Psyllid	Orchard	Bush	Psyllid	Orchard	Bush	Psyllid	Orchard	Σ
I01	46	28	128	8	5	82	61	6	74	438
I04	5	4	17	6	1	13	2	1	5	54
I09	37	8	55	71	7	34	48	12	25	297
I10	6	3	8	5	0	15	1	3	15	56
I11	25	12	32	6	1	3	3	0	0	82
I13	4	3	19	3	4	14	0	0	1	48
Σ	123	58	259	99	18	161	115	22	120	975

I01-339

I04-9

I11-267

I12

- Statistics
 - correspondence analysis of haplotypes and compartment × region
 - multinomial logistic regression $\rightarrow P(\text{compartment} \times \text{region}) = 6 \times 10^{-7}$
 - Fisher's exact tests on multinomial counts
 - spatial analysis (independence tests)

Within-region

INRA@

Spatial molecular epidemiology of ESFY

I10-310

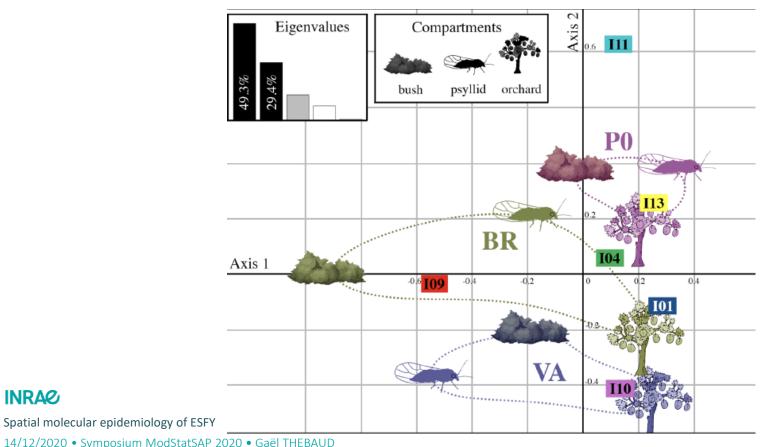
I10-307

► I04-175

I04-453

I01-248

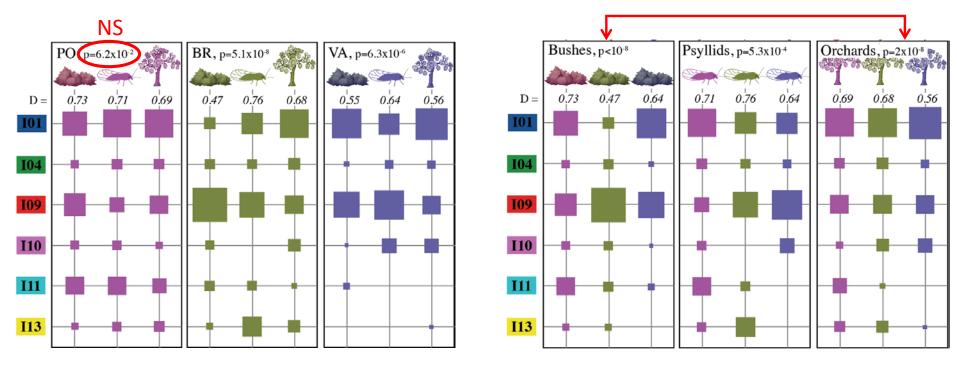
I01-104


I04-407

Results (correspondence analysis)

INRA

Proximity of haplotype frequencies across regions and compartments


- Regions: Genetic homogeneity in Pyrénées-Orientales (and Valence)
- **Compartments:** Haplotype frequencies are more similar in cultivated trees than in the wild

Results (Fisher's exact tests)

Proximity of haplotype frequencies across regions and compartments

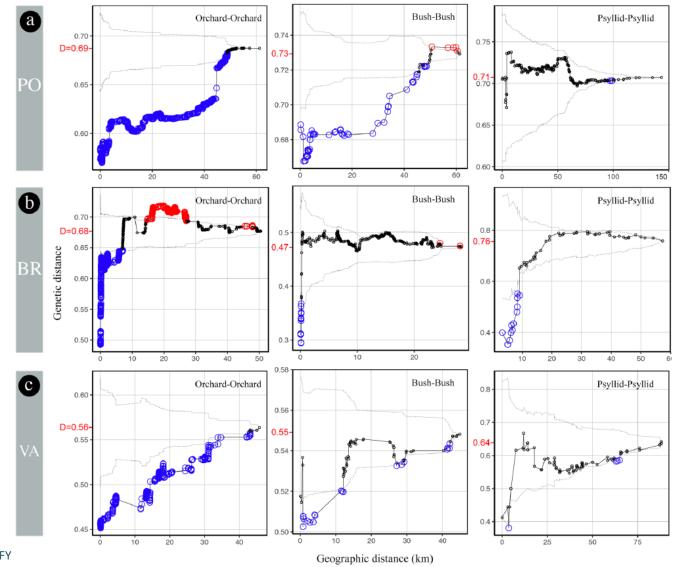
- **Regions:** Haplotype frequencies non significantly different only in PO
- **Compartments:** Haplotype frequencies differ more significantly in bushes than in orchards

INRAØ

Spatial molecular epidemiology of ESFY

Spatial analysis within compartment (method)

Join counts within an increasing radius


- Each region is treated separately
- H₀ hypothesis: Haplotypes occur at random among sampled points
- Test statistic: For each radius *d*, proportion of pairs of points with different haplotypes
- Test procedure: Random labelling N=10,000 permutations of haplotypes among sampled points
- P-value: For each distance class, rank of observed test statistic among the *N* computed statistics
- Confidence envelope: between $N\alpha/2$ and $N(1 \alpha/2)$

Spatial molecular epidemiology of ESFY

> Spatial analysis within compartment (results)

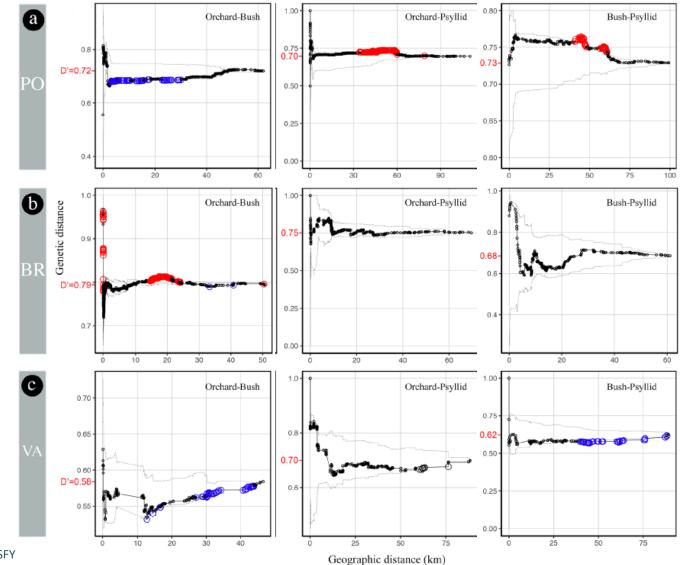
Join counts within an increasing radius

INRA@

Spatial molecular epidemiology of ESFY

Spatial analysis between compartments (method)

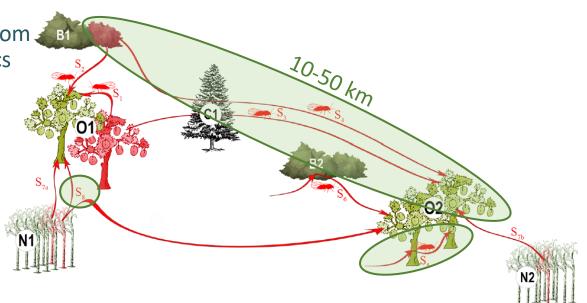
Join counts within an increasing radius


- Each region is treated separately
- H₀ hypothesis: Haplotypes of the lesser structured compartment are spatially independent of haplotypes of the other compartment
- Test statistic: For each radius *d*, proportion of pairs of points belonging to different compartment with different haplotypes
- Test procedure: Random labels in lesser structured compartment N=10,000 permutations of haplotypes among sampled points
- P-value: For each distance class, rank of observed test statistic among the *N* computed statistics
- Confidence envelope: between $N\alpha/2$ and $N(1 \alpha/2)$

Spatial molecular epidemiology of ESFY

> Spatial analysis between compartments (results)

Join counts within an increasing radius



INRA@

Spatial molecular epidemiology of ESFY

- Statistical tests of spatial independence
 - no need to define population units
 - considers all scales within the same analysis
 - flexible framework: enables different hypotheses and test statistics
 - easy to implement
- Conclusions on ESFY epidemiology:
- Transmissions between years (from bushes) drive the ESFY epidemics
 - Epidemiological unit: 10-50 km
 - Successive transmissions occur within compartments
- Nurseries contribute to the national spread

INRAØ

Spatial molecular epidemiology of ESFY 14/12/2020 • Symposium ModStatSAP 2020 • Gaël THEBAUD

> Thanks for your attention

Further information in:

SCIENTIFIC REPORTS

natureresearch

SCIENTIFIC REPORTS | (2020) 10:5002 | https://doi.org/10.1038/s41598-020-61908-0

OPEN Multi-scale spatial genetic structure of the vector-borne pathogen '*Candidatus* Phytoplasma prunorum' in orchards and in wild habitats

Véronique Marie-Jeanne^{1,3}, François Bonnot¹, Gaël Thébaud¹, Jean Peccoud^{1,2}, Gérard Labonne¹ & Nicolas Sauvion^{1,3*}

Spatial molecular epidemiology of ESFY